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ABSTRACT

Heart failure (HF) is a chronic and progressive condition that significantly impacts healthcare systems 
worldwide due to high hospitalization and readmission rates. Traditional prediction models frequently rely 
on clinical assessments and historical data, but they cannot provide the accuracy required for effective 
intervention. Integrating clinical data with advanced analytics offers a promising approach to improving 
readmission prediction models, enabling targeted interventions for high-risk patients. The research aimed 
to develop an accurate 30 days and 60 days readmission prediction model for HF patients using clinical 
data and deep learning (DL) techniques. An Efficient Cockroach Swarm-tuned Deep Belief Network (ECS-
DBN) model is provided to predict the risk of readmission in heart failure patients. The dataset included HF 
clinical information in readmissions. The dataset included health records, diagnostic test results, treatment 
history, and patient demographics. Data cleaning and normalization are performed to ensure accuracy and 
consistency. Efficient cockroach swarm optimization is employed to fine-tune the hyperparameters of the 
DBN, enhancing its predictive accuracy and computational efficiency of readmission in heart failure patients. 
An ideal categorization threshold was established based on anticipated cost reductions, and performance 
was evaluated using the correlation statistic. The ECS-DBN model outperformed other techniques, achieving 
a high accuracy (0,96), recall (0,63), precision (0,97), F1-Score (0,65) and recall (0,63) compared to the 
conventional method in 60 days. The results show that using advanced analytics to analyze clinical data 
enhances the prediction of readmission in patients with HF. By identifying high-risk individuals early on, the 
suggested paradigm optimizes healthcare by enabling focused interventions and improving clinical outcomes.

Keywords: Heart Failure (HF); Readmission Predictions; Clinical Data; an Efficient Cockroach Swarm-Tuned 
Deep Belief Network (ECS-DBN).

RESUMEN

La insuficiencia cardiaca (IC) es una enfermedad crónica y progresiva que afecta significativamente a 
los sistemas sanitarios de todo el mundo debido a las elevadas tasas de hospitalización y reingreso. Los 
modelos de predicción tradicionales suelen basarse en evaluaciones clínicas y datos históricos, pero no 
pueden proporcionar la precisión necesaria para una intervención eficaz. La integración de datos clínicos 
con análisis avanzados ofrece un enfoque prometedor para mejorar los modelos de predicción de reingresos, 
lo que permite intervenciones específicas para pacientes de alto riesgo. La investigación tuvo como objetivo 
desarrollar un modelo preciso de predicción de readmisión a 30 y 60 días para pacientes con IC utilizando 
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datos clínicos y técnicas de aprendizaje profundo (DL). Se proporciona un modelo de Red de Creencias 
Profundas (ECS-DBN, por sus siglas en inglés) ajustado por enjambre de cucarachas para predecir el riesgo 
de reingreso en pacientes con insuficiencia cardiaca. El conjunto de datos incluía información clínica de IC 
en reingresos. El conjunto de datos incluía historiales médicos, resultados de pruebas diagnósticas, historial 
de tratamiento y datos demográficos del paciente. Se realiza una limpieza y normalización de los datos para 
garantizar su precisión y coherencia. Se emplea la optimización eficiente de enjambre de cucarachas para 
ajustar los hiperparámetros de la DBN, mejorando su precisión predictiva y eficiencia computacional de 
readmisión en pacientes con insuficiencia cardiaca. Se estableció un umbral de categorización ideal basado 
en la reducción de costes prevista y se evaluó el rendimiento mediante el estadístico de correlación. El 
modelo ECS-DBN superó a otras técnicas, logrando una alta exactitud (0,96), recuperación (0,63), precisión 
(0,97), F1-Score (0,65) y recuperación (0,63) en comparación con el método convencional en 60 días. Los 
resultados muestran que el uso de analítica avanzada para analizar datos clínicos mejora la predicción de 
reingresos en pacientes con IC. Al identificar precozmente a los individuos de alto riesgo, el paradigma sugerido 
optimiza la asistencia sanitaria al permitir intervenciones focalizadas y mejorar los resultados clínicos.

Palabras clave: Insuficiencia Cardiaca (IC); Predicciones de Readmisión; Datos Clínicos; una Red de Creencia 
Profunda Eficiente Sintonizada por Enjambre de Cucarachas (ECS-DBN).

INTRODUCTION
Heart failure (HF) is a heterogeneous disease; it was initially identified as a developing crisis about 25 

years ago. The entire quantity of coronary illness patients is continually rising due to an aging and increasing 
population.(1) The causes of hospital readmissions in HF are complex and have multiple concerns, including 
disease-centered factors, such as worsening heart activities, and healthcare system factors, like inadequate 
care.(2) The primary cause of hospital readmissions in the real-world community of HF patients frequently 
happens in their earlier post-discharge period. These risk variables differ depending on the reason and timing 
of hospital readmissions.(3) In individuals with HF, concurrent conditions, like diabetes, high blood pressure, 
anemia, atrial fibrillation, diuretics, renal failures, and increased thyroid were linked to greater rates of 
readmission.(4) To prevent readmission of people, raise the standard of care, lower healthcare system expenses, 
and address the patient needs for improved care, a suitable prediction and analytics system is required.(5) The 
convention HF prediction methods rely on statistical models and clinical scoring; the complexity of handling 
large information demands cutting-edge methods, like artificial intelligence (AI) to improve timely diagnosis, 
risk evaluation, and tailored therapies.(6) With the application of new technologies, the AI-driven models can 
overcome the limitations of the traditional approaches by enhancing the prediction accuracy, and overall 
patient outcomes and reducing HF patient readmission.(7)

The research evaluated the deep learning (DL) architectures to forecast the 30-day critical care readmission 
probability caused by a variety of diseases.(8) For the data gathering purpose, the MIMIC-III data was employed. 
Multiple DL methods were used, such as neural ordinary differential equations (ODEs), recurrent layers, systems 
of attention, and medical concept embeddings. For static variables, odds ratios and subsequent weights were 
calculated using Bayesian estimation. The outcomes showed that a recurrent neural network (RNN) produced the 
best F1-score (0,372), AUROC (0,739), and accuracy (0,331). Models based on attention provided accessibility 
with minimal degradation of accuracy. 

To increase quick readmission prediction and identify concerns, like class imbalance and missing data, the 
research utilized machine learning (ML) techniques on patient information.(9) The information form 1856 HF 
patient details were gathered, which included laboratory tests, health indicators, hospitalizations historical 
events, and characteristics. The six ML models, including support vector machine (SVM), naïve bayes (NB), 
least-square SVM (LS-SVM), bagging, random forest (RF) and AdaBoost, were assessed. The findings showed that 
RF obtained the scores of accuracy (0,91) demonstrated the greater performance levels. 

To overcome disparities in class concerns, the investigation implemented a machine learning (ML) model that 
could predict 30-day HF admission.(10) The examination obtained the necessary information from the 10757 HF 
patients in 7 years. A multi-layer perceptron (MLP) based model was implemented with necessary preprocessing 
and feature extraction. From the findings, it was concluded that MLP outperformed other traditional techniques 
in terms of an AUC of 0,62, specificity of 70,01, and sensitivity of 48,42 leading to improvements in the accuracy 
of HF readmission and mortality prediction and having the best predictive performance.

The investigation employed different ML algorithms to predict HF patients in the re-hospitalization process 
within the specific duration.(11) The information was acquired under the guidance of a skilled cardiologist for 
the reliability and the key mechanisms of extracting features and the pre-processing were performed. The 
different algorithms of logistic regression (LR), SVM, decision trees (DT), and artificial neural networks (ANN) 
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were implemented. The findings showed the changing relative relevance over time, offered guidance for high-
quality, reasonably priced HF patient care, and lowered readmission rates.

The evaluation used ML techniques to predict hospital readmissions for individuals with atrial fibrillation 
in the HF.(12) The 2013 nationwide readmissions source was used to collect data, with a particular focus on 30-
day readmissions. The ML models comprised of DT and SVM were applied. In addition, the k-nearest neighbors 
(KNN) also employed. KNN delivered superior accuracy (0,84), specificity (0,997), precision (0,886), AUC (0,91), 
and sensitivity (0,713), which was higher than the two ML approaches. These results proved the effective risk 
assessment and preventative measures by highlighting important factors driving HF problems.

To forecast hospital readmissions among patients with HF and address missing data in electronic health records 
(EHR) the research introduced a novel method.(13) The MIMIC-III database was employed as the data collection 
process. For the regeneration of data that was absent, the Gaussian Process Latent Variable Model (GPLVM), 
was performed, which developed a lower-dimensional encoding to predict values. A constrained support vector 
machine (cSVM) was suggested for obtaining characteristics, taking input uncertainty into account for reliable 
forecasting. With an AUC of 0,68, the results revealed a 7 % increase in accuracy in predicting and adjusted 
mean absolute mistakes of 0,11–0,12 compared to traditional methods.

The examination provided a framework for quickly and accurately predicting HF mortality.(14) The number 
of 10,198 inpatient data from the regional hospital was utilized for data collection. A DL method of feature 
rearrangement-based deep learning system (FRDLS) was recommended and the imbalance in data is addressed 
and is also employed as feature extraction. The outcomes revealed that the model predicts in-hospital, 30-day, 
and 1-year mortality with excellent accuracy and AUC (90,37), outperforming conventional ML techniques.

The investigation developed a neural network rather than logistic regression to predict 30 days of 
rehospitalization in people with HF.(15) The administration asserts that they were used to gather information 
on 343,328 HF hospitalizations and a stratified 5-fold cross-validation technique is employed. Among the AI 
models, the LR did well at 0,643 AUC, while an RNN-CRF model obtained 0,642 AUC.(16) The findings demonstrate 
that hospitalization schedules enhance forecasts and that administrative data outperforms clinical information 
in terms of competitiveness.

The purpose of the research is to develop an efficient ESC-DBN model for improving the accuracy and 
reliability of hospital readmission prediction in HF individuals that contributes to reducing unnecessary 
readmissions, improving patient care, and optimizing hospital resource allocation.

The remaining part of the research is organized as follows: Section 2 describes the implemented ECS-DBN 
model with necessary data gathering and preprocessing approaches. Section 3 concentrates on the effective 
findings obtained from the investigation. Section 4 offers a detailed discussion of the overall outcomes and the 
conclusion is narrated in the final Section of Part 5.

METHOD
A brief explanation of the implemented ECS-DBN model with effective visualizations, the major role of 

the preprocessing mechanism, which concludes the data cleaning, normalization, and feature extraction 
approaches is all delivered in the part. Figure 1 displays the outline flow of the suggested ECS-DBN model.

Figure 1. ECS-DBN model flow

Data collection
The General Hospital Ward (GHW) dataset is utilized for HF readmission analysis, specifically predicting 

30- and 60-day hospital readmissions for coronary artery disease patients.(17) The crucial factors such as health 
records, diagnostic test results, treatment history, patient demographics, and HF-specific characteristics are 
taken into account. The model accuracy is improved by integrating these diverse clinical variables for enhanced 
prediction.
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Data preprocessing 
The data pre-processing transforms raw clinical data into a standardized and organized format for DL-based 

readmission prediction in HF. Two important mechanisms are involved in the stage, which is explained below.

Data cleaning
Initially, when dealing with abnormalities and missing clinical variables, the data cleaning process minimizes 

the irrelevant data that does not aid in model construction. The looping records were identified and removed 
to prevent data redundancy. Additionally, categorical variables, such as comorbidities and medication history, 
were standardized. Continuous variables undergo normalization to ensure consistency in scale, which enhances 
model convergence.

Normalization
The process of normalizing the clinical features is achieved through the Min-Max normalization. Normalization 

played a crucial role in ensuring the constant feature ranges for enhanced model performance by scaling the 
clinical variables. The process of preventing high-magnitude characteristics from dominating while maintaining 
differences in relative magnitude is achieved by transforming values to a predefined range of 0 to 1. Equation 
1 demonstrates the normalizing formula for each feature.

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦−min⁡(𝑦𝑦)
max(𝑦𝑦)−min⁡(𝑦𝑦)      (1) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛∗𝑚𝑚 = [
𝑊𝑊11⁡
𝑊𝑊21
⋮

𝑊𝑊𝑁𝑁1

⁡
𝑊𝑊12⁡
𝑊𝑊22
⋮

𝑊𝑊𝑁𝑁2

⁡
⋯⁡
⋯⋯
⋯
⁡
𝑊𝑊11⁡
𝑊𝑊2𝑀𝑀
⋮

𝑊𝑊𝑁𝑁𝑀𝑀

] = [𝑊𝑊1,𝑊𝑊2, . . ,𝑊𝑊𝑀𝑀]     (2)  

 

𝑊𝑊𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = (1𝑀𝑀)⁡∑ 𝑊𝑊𝑗𝑗
𝑀𝑀
𝑗𝑗=1        (3)  

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 = ⁡ [
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶11
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶21

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1

⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶12
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶22

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2

⁡
⋯
⋯⋯
⋯
⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1𝑀𝑀
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2𝑀𝑀

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀

⁡]       (4)  

 
𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃) = −∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔𝑗𝑗 − ∑𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗 − ∑𝐶𝐶𝑗𝑗𝑔𝑔𝑗𝑗  (5) 
 

𝑂𝑂𝜃𝜃(𝐼𝐼, 𝑔𝑔) =
1

𝑌𝑌(𝜃𝜃) exp(−𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃))    (6) 

 
𝑂𝑂(𝑔𝑔𝑗𝑗 = 1|𝐼𝐼) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗 + 𝐶𝐶𝑗𝑗𝑗𝑗 )   (7) 
 
𝑂𝑂(𝐼𝐼𝑗𝑗 = 1|𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗 + 𝐼𝐼𝑗𝑗)𝑗𝑗   (8) 
 

𝑍𝑍𝑗𝑗 = ⁡ {
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

  (9) 

 

𝑍𝑍𝑗𝑗 = ⁡ {
ω⁡ × 𝑍𝑍𝑗𝑗 + ⁡τ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
ω × 𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

   (10) 

𝑍𝑍𝑗𝑗 = ⁡ {𝑍𝑍𝑗𝑗 + ⁡(𝑍𝑍𝑗𝑗 − ⁡𝐶𝐶𝑗𝑗) + ⁡∀⁡𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁡𝑠𝑠𝑖𝑖⁡𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠 < ⁡𝑦𝑦ℎ𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢
𝑦𝑦𝑗𝑗 + 𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠⁡𝐶𝐶𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒   (11) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑟𝑟𝐼𝐼𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇⁡ (12) 

 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇             (13) 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 = ⁡ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁              (14) 

 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒 = 2 × 𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟×𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛
𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟+𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛 (15)  

 

Where the compensated value that is computed from the normalized outcomes is denoted by ynew. max(y) 
and min(y) are the highest and lowest values in the dataset. For enhancing convergence speed and stability in 
the ECS-DBN model, the Min-Max normalization is essential.

Feature extraction
The principal component analysis (PCA) is one of the techniques used for simplifying complex clinical data, 

as it reduces complexity yet preserves crucial information by identifying the most important aspects of patient 
datasets. To reduce the redundancy and increase computing efficiency, PCA is used on the hemodynamic 
indices, lab test findings, and echocardiographic measures. By converting correlated features into independent 
components, PCA enhances the predictive accuracy of the ECS-DBN model. The dimension reduction is performed 
by creating an orthogonal basis vector. The basic steps are followed as outlined. Initially, consider the entire 
clinical information as a matrix for the estimation and assume that the given matrix has a size of N×M, which 
has to be converted into a M dimensional dataset that is given in equation 2.
𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦−min⁡(𝑦𝑦)

max(𝑦𝑦)−min⁡(𝑦𝑦)      (1) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛∗𝑚𝑚 = [
𝑊𝑊11⁡
𝑊𝑊21
⋮

𝑊𝑊𝑁𝑁1

⁡
𝑊𝑊12⁡
𝑊𝑊22
⋮

𝑊𝑊𝑁𝑁2

⁡
⋯⁡
⋯⋯
⋯
⁡
𝑊𝑊11⁡
𝑊𝑊2𝑀𝑀
⋮

𝑊𝑊𝑁𝑁𝑀𝑀

] = [𝑊𝑊1,𝑊𝑊2, . . ,𝑊𝑊𝑀𝑀]     (2)  

 

𝑊𝑊𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = (1𝑀𝑀)⁡∑ 𝑊𝑊𝑗𝑗
𝑀𝑀
𝑗𝑗=1        (3)  

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 = ⁡ [
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶11
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶21

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1

⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶12
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶22

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2

⁡
⋯
⋯⋯
⋯
⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1𝑀𝑀
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2𝑀𝑀

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀

⁡]       (4)  

 
𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃) = −∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔𝑗𝑗 − ∑𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗 − ∑𝐶𝐶𝑗𝑗𝑔𝑔𝑗𝑗  (5) 
 

𝑂𝑂𝜃𝜃(𝐼𝐼, 𝑔𝑔) =
1

𝑌𝑌(𝜃𝜃) exp(−𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃))    (6) 

 
𝑂𝑂(𝑔𝑔𝑗𝑗 = 1|𝐼𝐼) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗 + 𝐶𝐶𝑗𝑗𝑗𝑗 )   (7) 
 
𝑂𝑂(𝐼𝐼𝑗𝑗 = 1|𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗 + 𝐼𝐼𝑗𝑗)𝑗𝑗   (8) 
 

𝑍𝑍𝑗𝑗 = ⁡ {
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

  (9) 

 

𝑍𝑍𝑗𝑗 = ⁡ {
ω⁡ × 𝑍𝑍𝑗𝑗 + ⁡τ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
ω × 𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

   (10) 

𝑍𝑍𝑗𝑗 = ⁡ {𝑍𝑍𝑗𝑗 + ⁡(𝑍𝑍𝑗𝑗 − ⁡𝐶𝐶𝑗𝑗) + ⁡∀⁡𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁡𝑠𝑠𝑖𝑖⁡𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠 < ⁡𝑦𝑦ℎ𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢
𝑦𝑦𝑗𝑗 + 𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠⁡𝐶𝐶𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒   (11) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑟𝑟𝐼𝐼𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇⁡ (12) 

 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇             (13) 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 = ⁡ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁              (14) 

 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒 = 2 × 𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟×𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛
𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟+𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛 (15)  

 

The M dimensional mean vector is calculated using equation 3.

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦−min⁡(𝑦𝑦)
max(𝑦𝑦)−min⁡(𝑦𝑦)      (1) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛∗𝑚𝑚 = [
𝑊𝑊11⁡
𝑊𝑊21
⋮

𝑊𝑊𝑁𝑁1

⁡
𝑊𝑊12⁡
𝑊𝑊22
⋮

𝑊𝑊𝑁𝑁2

⁡
⋯⁡
⋯⋯
⋯
⁡
𝑊𝑊11⁡
𝑊𝑊2𝑀𝑀
⋮

𝑊𝑊𝑁𝑁𝑀𝑀

] = [𝑊𝑊1,𝑊𝑊2, . . ,𝑊𝑊𝑀𝑀]     (2)  

 

𝑊𝑊𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = (1𝑀𝑀)⁡∑ 𝑊𝑊𝑗𝑗
𝑀𝑀
𝑗𝑗=1        (3)  

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 = ⁡ [
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶11
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶21

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1

⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶12
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶22

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2

⁡
⋯
⋯⋯
⋯
⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1𝑀𝑀
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2𝑀𝑀

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀

⁡]       (4)  

 
𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃) = −∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔𝑗𝑗 − ∑𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗 − ∑𝐶𝐶𝑗𝑗𝑔𝑔𝑗𝑗  (5) 
 

𝑂𝑂𝜃𝜃(𝐼𝐼, 𝑔𝑔) =
1

𝑌𝑌(𝜃𝜃) exp(−𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃))    (6) 

 
𝑂𝑂(𝑔𝑔𝑗𝑗 = 1|𝐼𝐼) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗 + 𝐶𝐶𝑗𝑗𝑗𝑗 )   (7) 
 
𝑂𝑂(𝐼𝐼𝑗𝑗 = 1|𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗 + 𝐼𝐼𝑗𝑗)𝑗𝑗   (8) 
 

𝑍𝑍𝑗𝑗 = ⁡ {
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

  (9) 

 

𝑍𝑍𝑗𝑗 = ⁡ {
ω⁡ × 𝑍𝑍𝑗𝑗 + ⁡τ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
ω × 𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

   (10) 

𝑍𝑍𝑗𝑗 = ⁡ {𝑍𝑍𝑗𝑗 + ⁡(𝑍𝑍𝑗𝑗 − ⁡𝐶𝐶𝑗𝑗) + ⁡∀⁡𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁡𝑠𝑠𝑖𝑖⁡𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠 < ⁡𝑦𝑦ℎ𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢
𝑦𝑦𝑗𝑗 + 𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠⁡𝐶𝐶𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒   (11) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑟𝑟𝐼𝐼𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇⁡ (12) 

 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇             (13) 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 = ⁡ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁              (14) 

 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒 = 2 × 𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟×𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛
𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟+𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛 (15)  

 

The covariance matrix of the clinical dataset is given in equation 4.

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦−min⁡(𝑦𝑦)
max(𝑦𝑦)−min⁡(𝑦𝑦)      (1) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛∗𝑚𝑚 = [
𝑊𝑊11⁡
𝑊𝑊21
⋮

𝑊𝑊𝑁𝑁1

⁡
𝑊𝑊12⁡
𝑊𝑊22
⋮

𝑊𝑊𝑁𝑁2

⁡
⋯⁡
⋯⋯
⋯
⁡
𝑊𝑊11⁡
𝑊𝑊2𝑀𝑀
⋮

𝑊𝑊𝑁𝑁𝑀𝑀

] = [𝑊𝑊1,𝑊𝑊2, . . ,𝑊𝑊𝑀𝑀]     (2)  

 

𝑊𝑊𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = (1𝑀𝑀)⁡∑ 𝑊𝑊𝑗𝑗
𝑀𝑀
𝑗𝑗=1        (3)  

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 = ⁡ [
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶11
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶21

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1

⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶12
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶22

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2

⁡
⋯
⋯⋯
⋯
⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1𝑀𝑀
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2𝑀𝑀

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀

⁡]       (4)  

 
𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃) = −∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔𝑗𝑗 − ∑𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗 − ∑𝐶𝐶𝑗𝑗𝑔𝑔𝑗𝑗  (5) 
 

𝑂𝑂𝜃𝜃(𝐼𝐼, 𝑔𝑔) =
1

𝑌𝑌(𝜃𝜃) exp(−𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃))    (6) 

 
𝑂𝑂(𝑔𝑔𝑗𝑗 = 1|𝐼𝐼) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗 + 𝐶𝐶𝑗𝑗𝑗𝑗 )   (7) 
 
𝑂𝑂(𝐼𝐼𝑗𝑗 = 1|𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗 + 𝐼𝐼𝑗𝑗)𝑗𝑗   (8) 
 

𝑍𝑍𝑗𝑗 = ⁡ {
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

  (9) 

 

𝑍𝑍𝑗𝑗 = ⁡ {
ω⁡ × 𝑍𝑍𝑗𝑗 + ⁡τ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
ω × 𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

   (10) 

𝑍𝑍𝑗𝑗 = ⁡ {𝑍𝑍𝑗𝑗 + ⁡(𝑍𝑍𝑗𝑗 − ⁡𝐶𝐶𝑗𝑗) + ⁡∀⁡𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁡𝑠𝑠𝑖𝑖⁡𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠 < ⁡𝑦𝑦ℎ𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢
𝑦𝑦𝑗𝑗 + 𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠⁡𝐶𝐶𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒   (11) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑟𝑟𝐼𝐼𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇⁡ (12) 

 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇             (13) 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 = ⁡ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁              (14) 

 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒 = 2 × 𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟×𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛
𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟+𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛 (15)  

 

Eigenvalues and eigenvectors are calculated and sorted from the matrix. The obtained eigenvector is used 
to transform the matrix into a new subsequence. In the above manner, the dimensionality is optimized in the 
GHW dataset.

Efficient Cockroach Swarm-tuned Deep Belief Network (ECS-DBN) model for readmission prediction
To enhance the prediction of HF readmissions, the research implements the advanced model named DBN 

with ECSO approach. The potential of DBN to detect intricate correlations between clinical variables allows for 
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earlier treatments to lower readmission rates, while the prediction accuracy and generalization capacity of the 
model is directly impacted by ECS. 

Deep Belief Network (DBN) 
To improve the accuracy of 30 and 60 days readmission prediction for patients with HF a suitable method 

called DBN is utilized. The stacks of Restricted Boltzmann Machines (RBMs) comprise the DBN kind of 
unsupervised DL model, which successfully develops structured representations of features from clinical data. 
Every layer of RBM that together build up the DBN model conveys substantial trends from high-dimensional 
clinical information. There are different functions involved in the DBN. Initially, the DBN is pre-trained using 
unsupervised training, and the fundamental characteristics in the data are captured by each RBM, as it attempts 
to recreate the information it provides. After the initial process, the RBM uses the output of the hidden layer of 
the previous RBM as its input. Multiple RBMs are stacked in effect by repeating that approach with each level. 
Following the stacking and pre-training of each RBM, supervised learning is used to fine-tune the entirety of the 
network using labeled information. For improving the network’s capacity for certain tasks, such as prediction 
or classification and adjusting network configurations using methods like backpropagation (BP) fine-tuning is 
essential. To reduce prediction errors, the BP adjusts the weighting of the entire network depending on labeled 
information. The combined configurations of RBM energy distribution could be calculated from equation 5.

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦−min⁡(𝑦𝑦)
max(𝑦𝑦)−min⁡(𝑦𝑦)      (1) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛∗𝑚𝑚 = [
𝑊𝑊11⁡
𝑊𝑊21
⋮

𝑊𝑊𝑁𝑁1

⁡
𝑊𝑊12⁡
𝑊𝑊22
⋮

𝑊𝑊𝑁𝑁2

⁡
⋯⁡
⋯⋯
⋯
⁡
𝑊𝑊11⁡
𝑊𝑊2𝑀𝑀
⋮

𝑊𝑊𝑁𝑁𝑀𝑀

] = [𝑊𝑊1,𝑊𝑊2, . . ,𝑊𝑊𝑀𝑀]     (2)  

 

𝑊𝑊𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = (1𝑀𝑀)⁡∑ 𝑊𝑊𝑗𝑗
𝑀𝑀
𝑗𝑗=1        (3)  

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 = ⁡ [
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶11
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶21

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1

⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶12
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶22

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2

⁡
⋯
⋯⋯
⋯
⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1𝑀𝑀
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2𝑀𝑀

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀

⁡]       (4)  

 
𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃) = −∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔𝑗𝑗 − ∑𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗 − ∑𝐶𝐶𝑗𝑗𝑔𝑔𝑗𝑗  (5) 
 

𝑂𝑂𝜃𝜃(𝐼𝐼, 𝑔𝑔) =
1

𝑌𝑌(𝜃𝜃) exp(−𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃))    (6) 

 
𝑂𝑂(𝑔𝑔𝑗𝑗 = 1|𝐼𝐼) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗 + 𝐶𝐶𝑗𝑗𝑗𝑗 )   (7) 
 
𝑂𝑂(𝐼𝐼𝑗𝑗 = 1|𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗 + 𝐼𝐼𝑗𝑗)𝑗𝑗   (8) 
 

𝑍𝑍𝑗𝑗 = ⁡ {
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

  (9) 

 

𝑍𝑍𝑗𝑗 = ⁡ {
ω⁡ × 𝑍𝑍𝑗𝑗 + ⁡τ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
ω × 𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

   (10) 

𝑍𝑍𝑗𝑗 = ⁡ {𝑍𝑍𝑗𝑗 + ⁡(𝑍𝑍𝑗𝑗 − ⁡𝐶𝐶𝑗𝑗) + ⁡∀⁡𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁡𝑠𝑠𝑖𝑖⁡𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠 < ⁡𝑦𝑦ℎ𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢
𝑦𝑦𝑗𝑗 + 𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠⁡𝐶𝐶𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒   (11) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑟𝑟𝐼𝐼𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇⁡ (12) 

 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇             (13) 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 = ⁡ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁              (14) 

 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒 = 2 × 𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟×𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛
𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟+𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛 (15)  

 

The ECS-DBN parameters are determined by θ=(X,a,b). The bias of visible and hidden components is 
represented by bi and aj respectively. The Boltzmann distribution determines the aggregate distribution of 
probability, which is given in equation 6.

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦−min⁡(𝑦𝑦)
max(𝑦𝑦)−min⁡(𝑦𝑦)      (1) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛∗𝑚𝑚 = [
𝑊𝑊11⁡
𝑊𝑊21
⋮

𝑊𝑊𝑁𝑁1

⁡
𝑊𝑊12⁡
𝑊𝑊22
⋮

𝑊𝑊𝑁𝑁2

⁡
⋯⁡
⋯⋯
⋯
⁡
𝑊𝑊11⁡
𝑊𝑊2𝑀𝑀
⋮

𝑊𝑊𝑁𝑁𝑀𝑀

] = [𝑊𝑊1,𝑊𝑊2, . . ,𝑊𝑊𝑀𝑀]     (2)  

 

𝑊𝑊𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = (1𝑀𝑀)⁡∑ 𝑊𝑊𝑗𝑗
𝑀𝑀
𝑗𝑗=1        (3)  

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 = ⁡ [
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶11
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶21

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1

⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶12
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶22

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2

⁡
⋯
⋯⋯
⋯
⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1𝑀𝑀
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2𝑀𝑀

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀

⁡]       (4)  

 
𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃) = −∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔𝑗𝑗 − ∑𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗 − ∑𝐶𝐶𝑗𝑗𝑔𝑔𝑗𝑗  (5) 
 

𝑂𝑂𝜃𝜃(𝐼𝐼, 𝑔𝑔) =
1

𝑌𝑌(𝜃𝜃) exp(−𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃))    (6) 

 
𝑂𝑂(𝑔𝑔𝑗𝑗 = 1|𝐼𝐼) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗 + 𝐶𝐶𝑗𝑗𝑗𝑗 )   (7) 
 
𝑂𝑂(𝐼𝐼𝑗𝑗 = 1|𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗 + 𝐼𝐼𝑗𝑗)𝑗𝑗   (8) 
 

𝑍𝑍𝑗𝑗 = ⁡ {
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

  (9) 

 

𝑍𝑍𝑗𝑗 = ⁡ {
ω⁡ × 𝑍𝑍𝑗𝑗 + ⁡τ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
ω × 𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

   (10) 

𝑍𝑍𝑗𝑗 = ⁡ {𝑍𝑍𝑗𝑗 + ⁡(𝑍𝑍𝑗𝑗 − ⁡𝐶𝐶𝑗𝑗) + ⁡∀⁡𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁡𝑠𝑠𝑖𝑖⁡𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠 < ⁡𝑦𝑦ℎ𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢
𝑦𝑦𝑗𝑗 + 𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠⁡𝐶𝐶𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒   (11) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑟𝑟𝐼𝐼𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇⁡ (12) 

 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇             (13) 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 = ⁡ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁              (14) 

 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒 = 2 × 𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟×𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛
𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟+𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛 (15)  

 

Where Y(θ) is the normalization factor. The binary form of the hidden component with the visible component 
that is i set to 1 with the probability is given in equation 7.

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦−min⁡(𝑦𝑦)
max(𝑦𝑦)−min⁡(𝑦𝑦)      (1) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛∗𝑚𝑚 = [
𝑊𝑊11⁡
𝑊𝑊21
⋮

𝑊𝑊𝑁𝑁1

⁡
𝑊𝑊12⁡
𝑊𝑊22
⋮

𝑊𝑊𝑁𝑁2

⁡
⋯⁡
⋯⋯
⋯
⁡
𝑊𝑊11⁡
𝑊𝑊2𝑀𝑀
⋮

𝑊𝑊𝑁𝑁𝑀𝑀

] = [𝑊𝑊1,𝑊𝑊2, . . ,𝑊𝑊𝑀𝑀]     (2)  

 

𝑊𝑊𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = (1𝑀𝑀)⁡∑ 𝑊𝑊𝑗𝑗
𝑀𝑀
𝑗𝑗=1        (3)  

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 = ⁡ [
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶11
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶21

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1

⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶12
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶22

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2

⁡
⋯
⋯⋯
⋯
⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1𝑀𝑀
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2𝑀𝑀

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀

⁡]       (4)  

 
𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃) = −∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔𝑗𝑗 − ∑𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗 − ∑𝐶𝐶𝑗𝑗𝑔𝑔𝑗𝑗  (5) 
 

𝑂𝑂𝜃𝜃(𝐼𝐼, 𝑔𝑔) =
1

𝑌𝑌(𝜃𝜃) exp(−𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃))    (6) 

 
𝑂𝑂(𝑔𝑔𝑗𝑗 = 1|𝐼𝐼) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗 + 𝐶𝐶𝑗𝑗𝑗𝑗 )   (7) 
 
𝑂𝑂(𝐼𝐼𝑗𝑗 = 1|𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗 + 𝐼𝐼𝑗𝑗)𝑗𝑗   (8) 
 

𝑍𝑍𝑗𝑗 = ⁡ {
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

  (9) 

 

𝑍𝑍𝑗𝑗 = ⁡ {
ω⁡ × 𝑍𝑍𝑗𝑗 + ⁡τ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
ω × 𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

   (10) 

𝑍𝑍𝑗𝑗 = ⁡ {𝑍𝑍𝑗𝑗 + ⁡(𝑍𝑍𝑗𝑗 − ⁡𝐶𝐶𝑗𝑗) + ⁡∀⁡𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁡𝑠𝑠𝑖𝑖⁡𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠 < ⁡𝑦𝑦ℎ𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢
𝑦𝑦𝑗𝑗 + 𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠⁡𝐶𝐶𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒   (11) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑟𝑟𝐼𝐼𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇⁡ (12) 

 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇             (13) 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 = ⁡ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁              (14) 

 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒 = 2 × 𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟×𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛
𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟+𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛 (15)  

 

The binary form of the visible component with the hidden component that is i set to 1 with the probability 
is calculated by equation 8.

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦−min⁡(𝑦𝑦)
max(𝑦𝑦)−min⁡(𝑦𝑦)      (1) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛∗𝑚𝑚 = [
𝑊𝑊11⁡
𝑊𝑊21
⋮

𝑊𝑊𝑁𝑁1

⁡
𝑊𝑊12⁡
𝑊𝑊22
⋮

𝑊𝑊𝑁𝑁2

⁡
⋯⁡
⋯⋯
⋯
⁡
𝑊𝑊11⁡
𝑊𝑊2𝑀𝑀
⋮

𝑊𝑊𝑁𝑁𝑀𝑀

] = [𝑊𝑊1,𝑊𝑊2, . . ,𝑊𝑊𝑀𝑀]     (2)  

 

𝑊𝑊𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = (1𝑀𝑀)⁡∑ 𝑊𝑊𝑗𝑗
𝑀𝑀
𝑗𝑗=1        (3)  

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 = ⁡ [
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶11
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶21

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1

⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶12
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶22

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2

⁡
⋯
⋯⋯
⋯
⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1𝑀𝑀
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2𝑀𝑀

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀

⁡]       (4)  

 
𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃) = −∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔𝑗𝑗 − ∑𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗 − ∑𝐶𝐶𝑗𝑗𝑔𝑔𝑗𝑗  (5) 
 

𝑂𝑂𝜃𝜃(𝐼𝐼, 𝑔𝑔) =
1

𝑌𝑌(𝜃𝜃) exp(−𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃))    (6) 

 
𝑂𝑂(𝑔𝑔𝑗𝑗 = 1|𝐼𝐼) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗 + 𝐶𝐶𝑗𝑗𝑗𝑗 )   (7) 
 
𝑂𝑂(𝐼𝐼𝑗𝑗 = 1|𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗 + 𝐼𝐼𝑗𝑗)𝑗𝑗   (8) 
 

𝑍𝑍𝑗𝑗 = ⁡ {
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

  (9) 

 

𝑍𝑍𝑗𝑗 = ⁡ {
ω⁡ × 𝑍𝑍𝑗𝑗 + ⁡τ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
ω × 𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

   (10) 

𝑍𝑍𝑗𝑗 = ⁡ {𝑍𝑍𝑗𝑗 + ⁡(𝑍𝑍𝑗𝑗 − ⁡𝐶𝐶𝑗𝑗) + ⁡∀⁡𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁡𝑠𝑠𝑖𝑖⁡𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠 < ⁡𝑦𝑦ℎ𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢
𝑦𝑦𝑗𝑗 + 𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠⁡𝐶𝐶𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒   (11) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑟𝑟𝐼𝐼𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇⁡ (12) 

 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇             (13) 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 = ⁡ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁              (14) 

 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒 = 2 × 𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟×𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛
𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟+𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛 (15)  

 

By identifying significant trends in complicated clinical data, the predictive accuracy is increased by DBN’s 
layered structure, which efficiently detects undetected associations and improves adjusting hyper parameters 
which guarantees lower computing costs and quicker convergence.

Efficient Cockroach Swarm optimization (ECSO)
The ESCO is the global optimization technique that is inspired by the behavior of the cockroaches. To 

organize and make decisions, the cockroach colonies can communicate through the process called pheromones. 
Equation 9 is offered on how location status is conveyed using swarming activities.

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦−min⁡(𝑦𝑦)
max(𝑦𝑦)−min⁡(𝑦𝑦)      (1) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛∗𝑚𝑚 = [
𝑊𝑊11⁡
𝑊𝑊21
⋮

𝑊𝑊𝑁𝑁1

⁡
𝑊𝑊12⁡
𝑊𝑊22
⋮

𝑊𝑊𝑁𝑁2

⁡
⋯⁡
⋯⋯
⋯
⁡
𝑊𝑊11⁡
𝑊𝑊2𝑀𝑀
⋮

𝑊𝑊𝑁𝑁𝑀𝑀

] = [𝑊𝑊1,𝑊𝑊2, . . ,𝑊𝑊𝑀𝑀]     (2)  

 

𝑊𝑊𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = (1𝑀𝑀)⁡∑ 𝑊𝑊𝑗𝑗
𝑀𝑀
𝑗𝑗=1        (3)  

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 = ⁡ [
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶11
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶21

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1

⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶12
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶22

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2

⁡
⋯
⋯⋯
⋯
⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1𝑀𝑀
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2𝑀𝑀

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀

⁡]       (4)  

 
𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃) = −∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔𝑗𝑗 − ∑𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗 − ∑𝐶𝐶𝑗𝑗𝑔𝑔𝑗𝑗  (5) 
 

𝑂𝑂𝜃𝜃(𝐼𝐼, 𝑔𝑔) =
1

𝑌𝑌(𝜃𝜃) exp(−𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃))    (6) 

 
𝑂𝑂(𝑔𝑔𝑗𝑗 = 1|𝐼𝐼) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗 + 𝐶𝐶𝑗𝑗𝑗𝑗 )   (7) 
 
𝑂𝑂(𝐼𝐼𝑗𝑗 = 1|𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗 + 𝐼𝐼𝑗𝑗)𝑗𝑗   (8) 
 

𝑍𝑍𝑗𝑗 = ⁡ {
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

  (9) 

 

𝑍𝑍𝑗𝑗 = ⁡ {
ω⁡ × 𝑍𝑍𝑗𝑗 + ⁡τ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
ω × 𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

   (10) 

𝑍𝑍𝑗𝑗 = ⁡ {𝑍𝑍𝑗𝑗 + ⁡(𝑍𝑍𝑗𝑗 − ⁡𝐶𝐶𝑗𝑗) + ⁡∀⁡𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁡𝑠𝑠𝑖𝑖⁡𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠 < ⁡𝑦𝑦ℎ𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢
𝑦𝑦𝑗𝑗 + 𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠⁡𝐶𝐶𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒   (11) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑟𝑟𝐼𝐼𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇⁡ (12) 

 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇             (13) 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 = ⁡ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁              (14) 

 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒 = 2 × 𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟×𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛
𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟+𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛 (15)  

 

The personal optimal location is determined by Mi and the global optimal location is calculated by Mj. When 
the sight is a constant length of perception, the variations in cockroach behavior are measured by equation 10. 
Additionally, equation 11 offers the enhanced cockroaches’ hunger behavior of ECSO. The weighting factors are 
mentioned by ω.

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦−min⁡(𝑦𝑦)
max(𝑦𝑦)−min⁡(𝑦𝑦)      (1) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛∗𝑚𝑚 = [
𝑊𝑊11⁡
𝑊𝑊21
⋮

𝑊𝑊𝑁𝑁1

⁡
𝑊𝑊12⁡
𝑊𝑊22
⋮

𝑊𝑊𝑁𝑁2

⁡
⋯⁡
⋯⋯
⋯
⁡
𝑊𝑊11⁡
𝑊𝑊2𝑀𝑀
⋮

𝑊𝑊𝑁𝑁𝑀𝑀

] = [𝑊𝑊1,𝑊𝑊2, . . ,𝑊𝑊𝑀𝑀]     (2)  

 

𝑊𝑊𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = (1𝑀𝑀)⁡∑ 𝑊𝑊𝑗𝑗
𝑀𝑀
𝑗𝑗=1        (3)  

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 = ⁡ [
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶11
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶21

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1

⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶12
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶22

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2

⁡
⋯
⋯⋯
⋯
⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1𝑀𝑀
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2𝑀𝑀

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀

⁡]       (4)  

 
𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃) = −∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔𝑗𝑗 − ∑𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗 − ∑𝐶𝐶𝑗𝑗𝑔𝑔𝑗𝑗  (5) 
 

𝑂𝑂𝜃𝜃(𝐼𝐼, 𝑔𝑔) =
1

𝑌𝑌(𝜃𝜃) exp(−𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃))    (6) 

 
𝑂𝑂(𝑔𝑔𝑗𝑗 = 1|𝐼𝐼) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗 + 𝐶𝐶𝑗𝑗𝑗𝑗 )   (7) 
 
𝑂𝑂(𝐼𝐼𝑗𝑗 = 1|𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗 + 𝐼𝐼𝑗𝑗)𝑗𝑗   (8) 
 

𝑍𝑍𝑗𝑗 = ⁡ {
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

  (9) 

 

𝑍𝑍𝑗𝑗 = ⁡ {
ω⁡ × 𝑍𝑍𝑗𝑗 + ⁡τ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
ω × 𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

   (10) 

𝑍𝑍𝑗𝑗 = ⁡ {𝑍𝑍𝑗𝑗 + ⁡(𝑍𝑍𝑗𝑗 − ⁡𝐶𝐶𝑗𝑗) + ⁡∀⁡𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁡𝑠𝑠𝑖𝑖⁡𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠 < ⁡𝑦𝑦ℎ𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢
𝑦𝑦𝑗𝑗 + 𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠⁡𝐶𝐶𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒   (11) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑟𝑟𝐼𝐼𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇⁡ (12) 

 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇             (13) 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 = ⁡ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁              (14) 

 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒 = 2 × 𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟×𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛
𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟+𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛 (15)  
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Where, the cockroaches changing locations are denoted by (Zi- Ci) from the Zi position. yfood represents the 
precise location, yhunger is the hunger threshold calculation, which is a random value, and ci is a constant that 
controls the movement’s pace at that particular time. Algorithm 1 provides the entire process flow of the ECS-
DBN model.

Algorithm 1: ECS-DBN model
Step 1: Data Collection
Load Dataset (GHW)
Step 2: Data Preprocessing
Function Data Preprocessing(dataset):
Data Cleaning
For each record in Dataset:
Remove duplicate and irrelevant data
Standardize categorical variables (comorbidities, medication history)
Normalize continuous variables using Min-Max normalization:
ynew = (y - min(y)) / (max(y) - min(y))
Feature Extraction using PCA
Compute M-dimensional mean vector:
Wmean = (1/M) * Sum(Wj)
Compute Covariance Matrix:
ConvMat = Cov(W) 
Compute Eigenvalues and Eigenvectors
Sort Eigenvalues and transform matrix using selected Eigenvectors
Reduce dataset dimensionality
Step 4: Train the ECS-DBN Model
Function Train_ECS_DBN (train data, labels):
Initialize DBN with RBM
Pre-train RBMs in an unsupervised manner
For each RBM in DBN:
Train RBM using input data
Use hidden layer outputs as input for the next RBM
Fine-tune DBN using supervised learning with backpropagation
Train DBN on labeled data using cross-entropy loss and backpropagation
Return trained DBN model
Step 5: ECSO Optimization
Function ECSO_Optimization (DBN_model):
Initialize the population of cockroaches with random positions
For each iteration:
Update positions based on swarm and hunger behavior:
If local best qi ≠ current position yi:
Update yi = yi + τ * rand * (qi - yi)
Else
Update yi = yi + τ * rand * (qj - yi)
If rand < yhunger
Move towards data source yfood
Optimize DBN hyperparameters using ECS
Return optimized DBN mode
Step 6: Prediction
Function Predict(model, test_data):
Return model(test_data)
Step 7: Evaluation
Compute F1-score, Precision, Recall, and Accuracy for model performance
Main Execution
Dataset = Load GHW dataset
Preprocessed_Data = Data_Preprocessing(Dataset)
Reduced_Data = Feature_Extraction(Preprocessed_Data)
Trained_Model = Train_ECS_DBN(Reduced_Data, Labels)
Optimized_Model = ECS_Optimization(Trained_Model)
Predictions = Predict(Optimized_Model, Test_Data)
Evaluate_Model (Predictions, Ground_Truth)
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The novel ESC-DBN model enhances prediction accuracy by combining the strengths of feature extraction, 
reduces computational complexity, and optimizes model convergence. By incorporating ECS with DBN, the 
approach ensures robust learning, effective parameter tuning, and better generalization, leading to improved 
30 and 60 days HF readmission prediction.

RESULTS
The ECS-DBN model was legalized in the open dataset, and the suitable system configuration and consistency 

were verified using different performance metrics compared to the traditional approaches that are elaborated 
below.

System configuration: A high-performance system arrangement is essential for the ECS-DBN model. The 
software environment consists of Windows 10 or 11, an Intel Core i7 (8th Gen) processor, and 16 GB of RAM with 
Python 3.9 as the primary programming language. The DL frameworks including TensorFlow, NumPy, and Scikit-
learn are all necessary for the suggested model. The optimal performance for enhanced detection activities is 
ensured by these configurations. The key performance metrics are described in below.

Accuracy One significant indicator for assessing how well the ECS-DBN model that predicts the readmitted 
and non-readmitted situations properly for HF is achieved by accuracy. A higher accuracy is needed for the 
effective prediction. Equation 12 is used to calculate the accuracy.

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦−min⁡(𝑦𝑦)
max(𝑦𝑦)−min⁡(𝑦𝑦)      (1) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛∗𝑚𝑚 = [
𝑊𝑊11⁡
𝑊𝑊21
⋮

𝑊𝑊𝑁𝑁1

⁡
𝑊𝑊12⁡
𝑊𝑊22
⋮

𝑊𝑊𝑁𝑁2

⁡
⋯⁡
⋯⋯
⋯
⁡
𝑊𝑊11⁡
𝑊𝑊2𝑀𝑀
⋮

𝑊𝑊𝑁𝑁𝑀𝑀

] = [𝑊𝑊1,𝑊𝑊2, . . ,𝑊𝑊𝑀𝑀]     (2)  

 

𝑊𝑊𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = (1𝑀𝑀)⁡∑ 𝑊𝑊𝑗𝑗
𝑀𝑀
𝑗𝑗=1        (3)  

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 = ⁡ [
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶11
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶21

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1

⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶12
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶22

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2

⁡
⋯
⋯⋯
⋯
⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1𝑀𝑀
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2𝑀𝑀

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀

⁡]       (4)  

 
𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃) = −∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔𝑗𝑗 − ∑𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗 − ∑𝐶𝐶𝑗𝑗𝑔𝑔𝑗𝑗  (5) 
 

𝑂𝑂𝜃𝜃(𝐼𝐼, 𝑔𝑔) =
1

𝑌𝑌(𝜃𝜃) exp(−𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃))    (6) 

 
𝑂𝑂(𝑔𝑔𝑗𝑗 = 1|𝐼𝐼) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗 + 𝐶𝐶𝑗𝑗𝑗𝑗 )   (7) 
 
𝑂𝑂(𝐼𝐼𝑗𝑗 = 1|𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗 + 𝐼𝐼𝑗𝑗)𝑗𝑗   (8) 
 

𝑍𝑍𝑗𝑗 = ⁡ {
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

  (9) 

 

𝑍𝑍𝑗𝑗 = ⁡ {
ω⁡ × 𝑍𝑍𝑗𝑗 + ⁡τ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
ω × 𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

   (10) 

𝑍𝑍𝑗𝑗 = ⁡ {𝑍𝑍𝑗𝑗 + ⁡(𝑍𝑍𝑗𝑗 − ⁡𝐶𝐶𝑗𝑗) + ⁡∀⁡𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁡𝑠𝑠𝑖𝑖⁡𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠 < ⁡𝑦𝑦ℎ𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢
𝑦𝑦𝑗𝑗 + 𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠⁡𝐶𝐶𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒   (11) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑟𝑟𝐼𝐼𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇⁡ (12) 

 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇             (13) 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 = ⁡ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁              (14) 

 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒 = 2 × 𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟×𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛
𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟+𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛 (15)  

 

Precision: the accuracy of the model’s positive predictions is measured by the precision that indicates the 
proportion of correctly identified readmissions among all predicted readmissions. Reliable identification of 
high-risk patients is ensured by a greater precision value, which represents fewer errors in diagnosis. Equation 
13 is utilized to determine the precision.

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦−min⁡(𝑦𝑦)
max(𝑦𝑦)−min⁡(𝑦𝑦)      (1) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛∗𝑚𝑚 = [
𝑊𝑊11⁡
𝑊𝑊21
⋮

𝑊𝑊𝑁𝑁1

⁡
𝑊𝑊12⁡
𝑊𝑊22
⋮

𝑊𝑊𝑁𝑁2

⁡
⋯⁡
⋯⋯
⋯
⁡
𝑊𝑊11⁡
𝑊𝑊2𝑀𝑀
⋮

𝑊𝑊𝑁𝑁𝑀𝑀

] = [𝑊𝑊1,𝑊𝑊2, . . ,𝑊𝑊𝑀𝑀]     (2)  

 

𝑊𝑊𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = (1𝑀𝑀)⁡∑ 𝑊𝑊𝑗𝑗
𝑀𝑀
𝑗𝑗=1        (3)  

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 = ⁡ [
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶11
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶21

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1

⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶12
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶22

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2

⁡
⋯
⋯⋯
⋯
⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1𝑀𝑀
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2𝑀𝑀

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀

⁡]       (4)  

 
𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃) = −∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔𝑗𝑗 − ∑𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗 − ∑𝐶𝐶𝑗𝑗𝑔𝑔𝑗𝑗  (5) 
 

𝑂𝑂𝜃𝜃(𝐼𝐼, 𝑔𝑔) =
1

𝑌𝑌(𝜃𝜃) exp(−𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃))    (6) 

 
𝑂𝑂(𝑔𝑔𝑗𝑗 = 1|𝐼𝐼) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗 + 𝐶𝐶𝑗𝑗𝑗𝑗 )   (7) 
 
𝑂𝑂(𝐼𝐼𝑗𝑗 = 1|𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗 + 𝐼𝐼𝑗𝑗)𝑗𝑗   (8) 
 

𝑍𝑍𝑗𝑗 = ⁡ {
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

  (9) 

 

𝑍𝑍𝑗𝑗 = ⁡ {
ω⁡ × 𝑍𝑍𝑗𝑗 + ⁡τ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
ω × 𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

   (10) 

𝑍𝑍𝑗𝑗 = ⁡ {𝑍𝑍𝑗𝑗 + ⁡(𝑍𝑍𝑗𝑗 − ⁡𝐶𝐶𝑗𝑗) + ⁡∀⁡𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁡𝑠𝑠𝑖𝑖⁡𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠 < ⁡𝑦𝑦ℎ𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢
𝑦𝑦𝑗𝑗 + 𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠⁡𝐶𝐶𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒   (11) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑟𝑟𝐼𝐼𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇⁡ (12) 

 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇             (13) 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 = ⁡ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁              (14) 

 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒 = 2 × 𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟×𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛
𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟+𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛 (15)  

 

Recall (sensitivity): the model’s recall assesses its capacity to accurately detect every instance of readmission 
in patients with HF. Out of all real positive outcomes, it calculates the percentage of genuine positive results 
that were correctly predicted. The prompt care is shown by a greater recall value. Equation 14 is employed to 
measure recall.

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦−min⁡(𝑦𝑦)
max(𝑦𝑦)−min⁡(𝑦𝑦)      (1) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛∗𝑚𝑚 = [
𝑊𝑊11⁡
𝑊𝑊21
⋮

𝑊𝑊𝑁𝑁1

⁡
𝑊𝑊12⁡
𝑊𝑊22
⋮

𝑊𝑊𝑁𝑁2

⁡
⋯⁡
⋯⋯
⋯
⁡
𝑊𝑊11⁡
𝑊𝑊2𝑀𝑀
⋮

𝑊𝑊𝑁𝑁𝑀𝑀

] = [𝑊𝑊1,𝑊𝑊2, . . ,𝑊𝑊𝑀𝑀]     (2)  

 

𝑊𝑊𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = (1𝑀𝑀)⁡∑ 𝑊𝑊𝑗𝑗
𝑀𝑀
𝑗𝑗=1        (3)  

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 = ⁡ [
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶11
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶21

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1

⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶12
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶22

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2

⁡
⋯
⋯⋯
⋯
⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1𝑀𝑀
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2𝑀𝑀

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀

⁡]       (4)  

 
𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃) = −∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔𝑗𝑗 − ∑𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗 − ∑𝐶𝐶𝑗𝑗𝑔𝑔𝑗𝑗  (5) 
 

𝑂𝑂𝜃𝜃(𝐼𝐼, 𝑔𝑔) =
1

𝑌𝑌(𝜃𝜃) exp(−𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃))    (6) 

 
𝑂𝑂(𝑔𝑔𝑗𝑗 = 1|𝐼𝐼) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗 + 𝐶𝐶𝑗𝑗𝑗𝑗 )   (7) 
 
𝑂𝑂(𝐼𝐼𝑗𝑗 = 1|𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗 + 𝐼𝐼𝑗𝑗)𝑗𝑗   (8) 
 

𝑍𝑍𝑗𝑗 = ⁡ {
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

  (9) 

 

𝑍𝑍𝑗𝑗 = ⁡ {
ω⁡ × 𝑍𝑍𝑗𝑗 + ⁡τ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
ω × 𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

   (10) 

𝑍𝑍𝑗𝑗 = ⁡ {𝑍𝑍𝑗𝑗 + ⁡(𝑍𝑍𝑗𝑗 − ⁡𝐶𝐶𝑗𝑗) + ⁡∀⁡𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁡𝑠𝑠𝑖𝑖⁡𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠 < ⁡𝑦𝑦ℎ𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢
𝑦𝑦𝑗𝑗 + 𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠⁡𝐶𝐶𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒   (11) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑟𝑟𝐼𝐼𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇⁡ (12) 

 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇             (13) 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 = ⁡ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁              (14) 

 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒 = 2 × 𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟×𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛
𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟+𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛 (15)  

 

F1-score: the F1-score is a key indicator that evaluates a model’s predictive capability by balancing precision 
and recall. An excellent model with an ideal trade-off between detecting actual readmissions and preventing 
incorrect categorization is indicated by a higher F1-score. Equation 15 delivers the calculation for the F1-score.

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦−min⁡(𝑦𝑦)
max(𝑦𝑦)−min⁡(𝑦𝑦)      (1) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛∗𝑚𝑚 = [
𝑊𝑊11⁡
𝑊𝑊21
⋮

𝑊𝑊𝑁𝑁1

⁡
𝑊𝑊12⁡
𝑊𝑊22
⋮

𝑊𝑊𝑁𝑁2

⁡
⋯⁡
⋯⋯
⋯
⁡
𝑊𝑊11⁡
𝑊𝑊2𝑀𝑀
⋮

𝑊𝑊𝑁𝑁𝑀𝑀

] = [𝑊𝑊1,𝑊𝑊2, . . ,𝑊𝑊𝑀𝑀]     (2)  

 

𝑊𝑊𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = (1𝑀𝑀)⁡∑ 𝑊𝑊𝑗𝑗
𝑀𝑀
𝑗𝑗=1        (3)  

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼 = ⁡ [
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶11
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶21

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1

⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶12
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶22

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2

⁡
⋯
⋯⋯
⋯
⁡
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶1𝑀𝑀
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶2𝑀𝑀

⋮
𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀

⁡]       (4)  

 
𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃) = −∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑔𝑔𝑗𝑗 − ∑𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗 − ∑𝐶𝐶𝑗𝑗𝑔𝑔𝑗𝑗  (5) 
 

𝑂𝑂𝜃𝜃(𝐼𝐼, 𝑔𝑔) =
1

𝑌𝑌(𝜃𝜃) exp(−𝐹𝐹(𝐼𝐼, 𝑔𝑔, 𝜃𝜃))    (6) 

 
𝑂𝑂(𝑔𝑔𝑗𝑗 = 1|𝐼𝐼) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝐼𝐼𝑗𝑗 + 𝐶𝐶𝑗𝑗𝑗𝑗 )   (7) 
 
𝑂𝑂(𝐼𝐼𝑗𝑗 = 1|𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗 + 𝐼𝐼𝑗𝑗)𝑗𝑗   (8) 
 

𝑍𝑍𝑗𝑗 = ⁡ {
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

  (9) 

 

𝑍𝑍𝑗𝑗 = ⁡ {
ω⁡ × 𝑍𝑍𝑗𝑗 + ⁡τ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)⁡∀⁡𝐶𝐶𝑗𝑗 ≠ ⁡𝑍𝑍𝑗𝑗
ω × 𝑍𝑍𝑗𝑗 + ⁡τ⁡ × rand × (𝐶𝐶𝑗𝑗 − 𝑍𝑍𝑗𝑗)∀⁡𝐶𝐶𝑗𝑗 = ⁡𝑍𝑍𝑗𝑗

   (10) 

𝑍𝑍𝑗𝑗 = ⁡ {𝑍𝑍𝑗𝑗 + ⁡(𝑍𝑍𝑗𝑗 − ⁡𝐶𝐶𝑗𝑗) + ⁡∀⁡𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⁡𝑠𝑠𝑖𝑖⁡𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠 < ⁡𝑦𝑦ℎ𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛𝑢𝑢
𝑦𝑦𝑗𝑗 + 𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠⁡𝐶𝐶𝐼𝐼ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒   (11) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑟𝑟𝐼𝐼𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇⁡ (12) 

 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐼𝐼 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇             (13) 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝐼𝐼𝑅𝑅𝑅𝑅 = ⁡ 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁              (14) 

 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒 = 2 × 𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟×𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛
𝑢𝑢𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟+𝑝𝑝𝑢𝑢𝑛𝑛𝑟𝑟𝑗𝑗𝑝𝑝𝑗𝑗𝑓𝑓𝑛𝑛 (15)  

 
The ECS-DBN model’s effectiveness with the mentioned metrics is evaluated and compared with the existing 

method called Cost Sensitive DNN (CSDNN). Table 1 shows the 30-day readmission for the ESC-DBN with the cost 
sensitive DNN and the graphical representation is offered in figures 2 (a) and (b).

Table 1. ESC-DBN outcomes for 30-days and 60-days readmission

Readmission (days) Methods Accuracy Precision Recall F1-Score

30 CSDNN 0,89 0,89 0,26 0,44

ESC-DNN 
(Proposed)

0,94 0,95 0,52 0,61

60 CSDNN 0,92 0,93 0,50 0,54

ESC-DNN 
(Proposed)

0,96 0,97 0,63 0,65

Although the CSDNN achieved higher accuracy and precision, it had difficulties in feature learning and reliability 
concerns. The recommended ESC-DNN model achieved 0,94 and 0,96 (accuracy) demonstrating its superiority and 
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effective feature learning in readmission prediction. By achieving 0,95 and 0,97 (precision) ESC-DBN effectively 
reduces inaccurate results, increasing the trustworthiness of estimations. The value 0,52 and 0,63 (recall) 
greatly outperformed the existing DNN that reduces neglected scenarios by capturing more real readmissions 
compared to the cost sensitive, DNN, and 0,61 and 0,65 (F1-Score) obtained the increased class performance. 

Figure 2. Esc-DBN findings of (a) 30 days and (b) 60 days readmission

DISCUSSION
The CSDNN demonstrated some limitations in identifying readmitted patients due to its suboptimal 

performance. In contrast, the ESC-DBN model confirmed significant improvements and offered enhanced 
predictive capabilities. By effectively minimizing inaccurate probabilities, it strengthened the prediction 
reliability and reduced errors. Additionally, the model significantly improved the recall and ensured the better 
detection of actual readmissions while lowering missed cases. Its balanced classification approach improved 
the overall performance and made it a more dependable and efficient tool for readmission prediction. The ESC-
DBN model’s ability to refine forecasting accuracy and maintain class balance ensures robust decision-making in 
clinical settings. Its adaptability and efficiency promise a powerful alternative model to conventional models, 
providing healthcare professionals with a reliable method for identifying high-risk patients. 

CONCLUSIONS
The research underscored the effectiveness of ESC-DBN in enhancing the prediction accuracy of HF 

readmission patients. The ECS-DBN model, optimized using ECS, effectively processes complex clinical datasets 
of GHW and improves the accuracy in forecasting two categories of 30 and 60-day readmissions. To ensure the 
superior ESC-DBN model’s performance, the technique encompassed the preprocessing approaches like data 
cleaning and min-max normalization. Additionally, the dimensionality reduction is completed with the help of 
the PCA. With the layered RBM, the DBN improved the prediction reliability by identifying complicated trends 
in clinical information. By optimizing DBN hyperparameters, the ECS optimization approach decreased the 
computing costs and accelerated the convergence. The findings of 30 and 60-day readmission demonstrated the 
efficient way of the model handling in high-dimensional clinical data compared to conventional models. ECS-DBN 
highlighted the importance of successful HF treatment for 60 days in terms of accuracy (0,96), precision (0,97), 
recall (0,63), and F1-Score (0,65). The ECS-DBN model is effective; it mostly involves the comprehensiveness 
and quality of clinical characteristics. Predictions may be impacted by inadequate or inaccurate information. 
Further research will be implementing the model into the electronic health record (EHR) environments that 
could facilitate seamless and automated readmission risk assessment and improve patient management.
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