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ABSTRACT

Psychiatric illnesses, such as depression, generalized anxiety disorder, and schizophrenia, tend to be
characterized by mild neurophysiological markers that make early diagnosis difficult. The greatest limitation
of present diagnostic approaches is the failure to detect such mild brainwave anomalies with good accuracy,
especially during the early stages of the disorders. This research presents a new predictive model for the early
classification and diagnosis of psychiatric diseases from Electroencephalogram (EEG) signals. The framework
employs the use of the Archerfish Hunting Optimizer Tuned Spiking Neural Network (AHO-SNN). This hybrid
approach combines the computational effectiveness of an evolution-inspired optimizer with spiking neural
networks’ (SNNs) temporal processing ability. The AHO algorithm is used to fine-tune the SNN’s synaptic
weights in order to make the SNN more sensitive to neural oscillations and cortical pathologies related to
psychiatric disorders. The projected AHO-SNN results are precision 94 %, f1-score 94 %, accuracy 96 %, and
recall 92 %. The outcomes reveal that the AHO-SNN approach obtains high diagnhostic precision, separating
psychiatric patients from healthy controls based on the patterns of neural activity, for instance, theta
and alpha band anomalies. The technique has enormous potential to support improved early psychiatric
diagnosis, facilitating timely interventions and customized treatment strategies. Future research will center
on integrating multimodal biomarkers and real-time monitoring to further enhance diagnostic accuracy and
increase clinical utility.

Keywords: Electroencephalogram (EEG); Early Detection; Psychiatric Disorders; Real-Time Diagnostic;
Clinical Practice.

RESUMEN

Las enfermedades psiquiatricas, como la depresion, el trastorno de ansiedad generalizada y la esquizofrenia,
tienden a caracterizarse por marcadores neurofisiologicos leves que dificultan el diagnostico precoz. La
mayor limitacion de los enfoques diagnosticos actuales es la incapacidad para detectar estas anomalias leves
de las ondas cerebrales con buena precision, especialmente durante las primeras fases de los trastornos.
Esta investigacion presenta un nuevo modelo predictivo para la clasificacion y el diagnostico precoz de
enfermedades psiquiatricas a partir de senales de electroencefalograma (EEG). El marco emplea el uso
de la Red Neuronal de Spiking Sintonizada con el Optimizador de Caza Archerfish (AHO-SNN). Este enfoque
hibrido combina la eficacia computacional de un optimizador inspirado en la evolucion con la capacidad de
procesamiento temporal de las redes neuronales con picos (SNN). El algoritmo AHO se utiliza para ajustar los
pesos sinapticos de la SNN con el fin de hacerla mas sensible a las oscilaciones neuronales y a las patologias
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corticales relacionadas con los trastornos psiquiatricos. Los resultados proyectados de AHO-SNN son precision
94 %, puntuacion f1 94 %, exactitud 96 % y recuperacion 92 %. Los resultados revelan que el enfoque AHO-
SNN obtiene una alta precision diagnostica, separando a los pacientes psiquiatricos de los controles sanos
basandose en los patrones de actividad neuronal, por ejemplo, anomalias en las bandas theta y alfa. La
técnica tiene un enorme potencial para apoyar la mejora del diagnéstico psiquiatrico precoz, facilitando
intervenciones oportunas y estrategias de tratamiento personalizadas. La investigacion futura se centrara en
la integracion de biomarcadores multimodales y la monitorizacion en tiempo real para mejorar ain mas la
precision diagnostica y aumentar la utilidad clinica.

Palabras clave: Electroencefalograma (EEG); Deteccion Precoz; Trastornos Psiquiatricos; Diagndstico en
Tiempo Real; Practica Clinica.

INTRODUCTION

Early detection and classification of mental illness must occur in order to treat and intervene effectively.
Electroencephalography (EEG) became the ideal method of testing neural activity of most mental illnesses
because it is a non-surgical test; it provides excellent temporal resolution, and is able to detect brainwave
patterns corresponding to cognition and emotional status.®” The conventional diagnosis procedures rely
heavily on subjective judgments and clinical check-ups, leading to delays in diagnosis and treatment plan
inconsistencies.®

EEG is a straightforward neurophysiological technique that makes use of head probes to evaluate the brain’s
electric signals.® It records brain wave patterns generated by the activity of neurons, providing valuable
insight into cognitive processes, sleep disorders, epilepsy, and neurological disease.® EEG is commonly used
in medical diagnosis, brain-computer interfaces, and mental state exploration, as it allows excellent temporal
resolution for monitoring brain activity in real time.®

A broad spectrum of mental health conditions that affect emotion, thought, and behavior are referred to
as psychiatric issues. These conditions can affect daily functioning and general health. These illnesses, which
include depression, anxiety disorders, schizophrenia, and bipolar disorder, originate in intricate relationships
among biological, genetic, environmental, as well as psychological variables. Advances in neuroscience as well
as psychology have advanced diagnosis and treatment through the integration of medicine, psychotherapy, and
lifestyle modifications.® Treatment of psychiatric illnesses is paramount to breaking the stigma, promoting
early intervention, and enhancing mental health care procedures to enhance the quality of life for individuals
suffering from these conditions.

Early diagnosis and typification of psychiatric disorders with EEG data take advantage of sophisticated
signal processing and methodologies to detect patterns of neural activity related to mental illness. EEG offers
a painless and low-cost means to record brain function, allowing early diagnosis and intervention. Researchers
categorize disorders like depression, schizophrenia, and anxiety by analyzing EEG signals, enhancing diagnostic
accuracy and tailored treatment. The goal of this research is to present a sophisticated predictive model for
the early identification and classification of psychiatric disorders by EEG signals.

A Machine Learning (ML) approach was applied to evaluate EEG information from numerous channels for
the diagnosis of schizophrenia, which provided superb accuracy, sensitivity, and specificity.”” The approach
performed better while compared to other signal decomposition methods based on computational efficiency,
while performance differs with larger datasets and other patient conditions.

The ML focused on the need for biomarkers to make distinctions between Bipolar Disorder (BD) and Major
Depressive Disorder (MDD) at the early depression phase.® The method investigated widespread ML algorithms
applicable in brain image classification, highlighting the investigation that classified MDD from MRI data, as
well as predicting treatment outcomes. The process also examines complications, possible areas, and limits in
creating successful biomarkers in depression.

The research assessed ML methods using Deep Learning (DL) and Support Vector Machine (SVM) methods that
were conducted to investigate the feasibility of employing EEG data for assessment of stress.® Eleven subject-
dependent approaches were completed, combining EEG data of persons with ASD and neurotypical brains. The
models combined traditional brain-computer interface (BCl) techniques with DL models. Long ShortTerm Memory
(LSTM) and a two-layer Recurrent Neural Network (Two-layer RNN) effectively and accurately categorized
mental stress conditions. The methodology established the potential for real-time stress assessment and
adaptive intervention through closed-loop respiration modulation.

EEG and ML methods were used to examine cognitive deterioration following Deep Brain Stimulation (DBS)
in Parkinson’s disease (PD)." Extreme cognitive scores were classified using a Random Forest (RF) model with
feature selection. The classifier effectively distinguished cognitive performance, while occipital Peak Alpha
Frequency (PAF) showed lower accuracy. Predicted class probabilities correlated negatively with cognitive

https://doi.org/10.56294/mw2023131


https://doi.org/10.56294/mw2023131

3 Ganapathy K, et al

function, suggesting EEG’s potential for cognitive profiling in DBS screening, though broader validation is
needed.

EEG-based functional connectivity metrics combined with DL were explored for classifying cognitive
workload levels." EEG information collected from contributors completing the n-back mission was analyzed
to extract Mutual Information (MI), Phase Locking Value (PLV), and Phase Transfer Entropy (PTE). Subject-
specific classifiers involving Convolutional-LSTM (Conv-LSTM), Convolutional Neural Networks (CNNs), and LSTM
performed effectively in classification. The results, indicating great accuracy in subject-specific categorizations,
demonstrate the effectiveness with which functional connectivity measures are integrated with DL for cognitive
workload evaluation.

METHOD

EEG-based prediction frameworks have been demonstrated to be crucial for the early diagnosis and
categorization of mental disorders. The AHO-SNN model enables accurate classification, while the AHO method
optimizes synaptic weights. By distinguishing neurological irregularities, the classification improves diagnostic
accuracy and predictive stability. The overall flow is illustrated in figure 1.
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Figure 1. Proposed Flow

Data Collection
EEG data for the investigation was extracted from the EEG Dataset for Schizophrenia on Kaggle (https://
www.kaggle.com/datasets/shashwatwork/eeg-psychiatric-disorders-dataset?utm_source=chatgpt.com).
A psychiatric disorder is a mental illness determined by an expert in mental health that significantly impairs
the individual’s thoughts, moods, and/or behavior, increasing their risk of impairment, suffering, dying, or
loss of liberty. Furthermore, those symptoms must be more severe than normal in response to a distressing
occurrence, including natural sadness, following the death of a family member.

Archerfish Hunting Optimizer Tuned Spiking Neural Network (AHO-SNN) for Psychiatric Disorder Classification

The proposed AHO-SNN approach combines an Archerfish Hunting Optimizer (AHO) with Spiking Neural
Networks (SNNs) to enhance the identification of mental diseases using EEG data. By recovering synaptic
weights, the AHO approach reduces the susceptibility of the SNN to brain oscillations, especially anomalies in
the theta and alpha bands. Early detection and individualized planning for therapy are made possible by the
technique’s recovery of diagnostic accuracy.

Spiking Neural Network (SNN)
After the data collection process, the data has been sent as input to the SNN technique. EEG signals are
analysed using the SNN, by taking advantage of its ability to efficiently produce time dependent structures.
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The method isolates spike trains and decodes EEG signals to mimic the operation of organic neurons. Spiking
neuron models, such as the Izhikevich Model (IM), Hodgkin-Huxley (HH), Integrate-and-Fire (IF), and Spike
Response (SR), are commonly utilized for EEG-based psychological classifications. The representations’ ability
to replicate the feasibility of computation and biological neuron function differs.

The process follows the equation (1):

Dn% =J(8),V < Vyesr = Whenv = vj, (1)

Where:

J(s)-represents the input current.

v,,-is the firing threshold.

v-denotes the membrane potential.

D -represents the membrane capacitance.

A spike is released when the potential reaches v, returning it to its resting condition v ..
The Leaky Integrate-and-Fire (LIF) hypothesis, which presents a decay factor that restricts the indefinite
accumulation of potential, has been included to enhance temporal patterns. The governing equation is (2):

Sleak% = [U(S) - Vrest] + qn ](5)'1/ < Vyest = When = v > ng (2)

Where:
q,-is the membrane resistance
Sea= G, D, is the membrane time constant.

leak

This model improves spike-based feature extraction, enabling effective psychiatric condition classification.
By utilizing SNN, the system efficiently processes EEG signals with reduced computational cost while

preserving biologically plausible neuron dynamics. This enhances classification accuracy by capturing temporal
dependencies in EEG data.
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Figure 2. Flowchart for AHO
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The Archerfish Hunting Optimizer (AHOA) is a nature-inspired metaheuristics system that appropriates the
unique hunting behaviours of archerfish, such as shooting and jumping, identifies the most significant traits
while eliminating unnecessary ones. The performance enhances feature selection by sustaining optimal stability
between exploration and exploitation. The flowchart is given in figure 2.

Step 1: Initialization

The feature-selection strategy begins by establishing a searching space, with each possible solution
indicating an assortment of characteristics. The initial population comprises several archerfish, each located
within feature space. The location of archerfish is represented in equation (3):

20D = (2 Xy =y 4yt 4y e X 8 =y (3)

Where:

c denotes the dimensionality of the feature space.

Z® is the current position of the archerfish.

y,™" and y_ "> describe the feature selection boundaries.

A is a random variable uniformly distributed ranging from 0 and 1.

Step 2: Random Feature Selection
Each archerfish randomly selects a subset of features for evaluation. The selection process is guided by the
problem-specific constraints and hyperparameter tuning to ensure diversity among solutions.

Step 3: Fitness Function Evaluation
The performance of each selected feature subset is assessed using an objective function that optimizes
classification accuracy and minimizes redundancy. The fitness function is defined as equation (4):

Fitness Function = Optimizing[selecting features of NSL — KDD dataset] (4)

This ensures that only the most informative features are retained for subsequent classification tasks.

Step 4: Archerfish Jumping and Shooting behaviors
Archerfish employ two distinct strategies for hunting: shooting and jumping, which are adapted for feature
selection.

Jumping behavior

Jumping is a more energy-intensive process but provides a higher probability of capturing prey. The position
of an archerfish is updated based on the Euclidean distance between the prey (optimal feature subset) and its
current position (equation 5):

b, b, (b,a) _ (b,
7a+1) — 7(ba) +f_||zpﬁfy_z( a)||2 (Zprey 70

Where:

Z®¥ is the current position of the archerfish.
Z®21 is the updated position.

z_®a.702 represents the best feature subset.

prey

f is a random learning coefficient.

Shooting behavior

Shooting is a more precise but less exhaustive process. Archerfish adjust their positions based on refraction
effects at the air-water interface while targeting prey. The new feature selection is determined as follows in
equation (6):

b _ 0, @ s
Zpray = 2% + (0, ...~ X 5in6 .0 + ¢) ©)
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Where:

m represents motion due to gravity.

sin?® accounts for air resistance.

d? is the attractiveness ratio for a specific feature subset.
€ denotes refraction effects.

Step 5: Balancing Exploration and Exploitation

The optimization process alternates between exploitation (fine-tuning the optimal solution) and exploration
(looking for a variety of possibilities). The exploitation phase, known as swinging on the water surface, ensures
that archerfish focus on local refinement to prevent premature convergence, equation (7):

N

W = () +q (1-3) . (24 = Dyu(s) 7)

Where:

q is a random exploration parameter.

s represents the present iteration.

S denotes the maximal repetition count.

The position is updated using equation (8):

_ (2 ifPOR?) < P(yn)
yals +1) = { ¥ (s) else

Where:
P(y,) signifies the fitness value of the candidate resolution.
P(y_ "*?) denotes the fitness value of the new solution.

Step 6: Termination and optimal Feature selection

Until such a termination condition is met, such as reaching convergence or the number of iterations, the
stage goes on. Once selected with caution, the ultimate set of best features can be used for model prediction
or classification.

By efficiently eliminating redundant and unnecessary features, the AHOA-based feature selection approach
enhances model performance in classification problems. AHOA improves computational performance, preserves
a better balance between exploration and exploitation, and achieves a better selection accuracy compared to
other optimization algorithms.

The AHO-SNN approach utilizes the Archerfish Hunting Optimizer to fine-tune the synaptic weights of SNNs for
better detection of faint neurophysiological markers that are indicative of psychiatric diseases. This maximizes
the classification performance and early diagnosis ability, and facilitates more efficient differentiation between
controls and patients and lower diagnostic uncertainty. This integration increases the computational efficiency
and enables real-time analysis, making it a strong instrument for early psychiatric diagnosis and also for
individualized treatment planning.

RESULTS

The aim of the research is to enhance a state-of-the-art prediction system using EEG data for early
identification and classification of psychiatric disorders. Testing was conducted using Python 3.11.4 on a high-
performance computer with 64 GB RAM and an AMD Ryzen 5900X CPU running Windows 11, resulting in more
effective estimation and reliable model analysis. The strategy proposed makes use of the Archerfish Hunting
Optimizer Tuned Spiking Neural Network (AHO-SNN), in which the AHO algorithm enhances the synapse weight
to enhance the model’s response to neurophysiological fluctuations.

Performance Evaluation
The efficiency of the suggested technique is assessed in this research employing accuracy, precision, f1-
score, recall, execution time, and Receiver Operating Characteristic (ROC) curve. The proposed AHO-SNN
framework demonstrates high accuracy in detecting and classifying psychiatric disorders using EEG signals.
Accuracy: Accuracy is the measure of the general correctness that the AHO-SNN framework demonstrates
in categorizing psychiatric disorders using EEG signals. It is calculated as the number of subject cases correctly
identified, whether healthy controls or psychiatric patients, divided by the total predictions made. This is
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intended to bring an overall assessment of performance concerning the model. If accuracy is above average or
high, the framework is assumed to be a very useful one, aiding detection of the psychiatric misclassified high
conditions with less number of errors, as defined in equation (9).

TN+TP (9)

Accuracy = ——————
Y = IN+TP+FN+FP

Precision: The precision of evaluating the classifier expresses the ratio of correctly identified instances of
schizophrenia compared to all instances that are considered to be psychopathological. It describes how much
the model can be trusted to prevent false positives. High precision indicates that the framework assures that
healthy subjects are not misclassified as having mental disorders. Hence, higher precision indicates that the
AHO-SNN model effectively minimizes the rate of false diagnosis, thereby increasing the degree of confidence
in the diagnosis. The precision is calculated as follows in equation (10):

truepositive (1 0)

Precision = - —
falsenegative+true positive

Recall: It assesses the proportion of actual instances correctly identified to get a sense of the system’s
psychiatric disease recognition capability. It is important so that the patients with psychiatric illnesses are not
missed. The goal of recall-power measurement is to reduce false negatives, which is critical for early diagnosis.
A large value of recall indicates the system’s sensitivity to subtle neurophysiological markers, thus improving
the accuracy of early detection, as given in equation (11).

true positive
Recall = P — (11)
false positive+true positive

F1-Score: It measures recall and precision to deliver a complete assessment of the strategy’s diagnostic
effectiveness. It represents the balanced average of precision and recall. The purpose is to provide an overall
assessment of classification reliability. A high F1-score in the AHO-SNN framework indicates that it maintains
strong predictive power while minimizing both types of errors, as defined in equation (12).

PrecisionxRecall
Fl-score = 2 X ————— (12)
Precision+Recall

Table 1 and figure 3 show the results for accuracy, precision, recall, and f1-score. The findings of the
proposed AHO-SNN technique are 96 % in accuracy, 94 % in precision, 92 % in recall, and 94 % in f1-score.

Table 1. Numerical outcomes of the proposed method

Metrics Values (%)
Accuracy 96
Precision 94
Recall 92
F1-score 94
96 94 92 94
100
_. 80+
xR
» 60
]
=
S 40+
20
0 - - - -
Accuracy Precision Recall F1-Score
Metrics

Figure 3. Graphical representation of proposed outcomes
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ROC Curve: To assess the AHO-SNN method’s classification performance in the detection of psychiatric
conditions based on EEG signals, the ROC curve is being utilized. It compares the True Positive Rate (TPR)
against the False Positive Rate (FPR) at several limits. The outcomes of the ROC are presented in figure 4. It
demonstrates the model’s effectiveness, with AUC quantifying performance. The higher AUC indicates better
discrimination, validating the model’s reliability for classification tasks.
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Figure 4. Graphical representation of ROC

Execution Time: It denotes the computational efficiency of AHO-SNN in processing EEG signals toward
psychiatric disorder classification, which represents time for feature selection, training a model, and
classifying the EEG data. It illustrates processing time and analyzes processing speed performance and real
time applicability. The findings of execution time are displayed in figure 5. The results indicate an optimized
and real execution time at which speed/accuracy balance for effective early diagnosis is achieved.
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Figure 5. Graphical representation outcomes of execution time

DISCUSSION

The suggested AHO-SNN framework efficiently improves early psychiatric disorder detection by leveraging
EEG signals. The AHO-SNN model demonstrated superior classification performance by effectively capturing
subtle neurophysiological markers associated with psychiatric disorders. The integration of the AHO with
SNNs enhances synaptic weight adjustments, improving sensitivity to understate neurophysiological markers.
Investigational results establish high diagnostic accuracy, especially in distinguishing healthy individuals from
those with psychiatric conditions based on theta and alpha band anomalies. The model’s ability to capture
these neural patterns allows for early intervention, addressing a critical restriction in conventional diagnostic
methods. Despite its effectiveness, integrating multimodal biomarkers and real-time monitoring might further
improve diagnostic precision and flexibility. Future developments may include combining additional physiological
and behavioral data to enhance classification outcomes and develop the technique’s clinical relevance for
personalized treatment strategies.

https://doi.org/10.56294/mw2023131


https://doi.org/10.56294/mw2023131

9 Ganapathy K, et al

CONCLUSIONS

The carried-out AHO-SNN framework correctly improves the early detection and category of psychiatric
problems utilizing EEG indicators. By leveraging the AHO to pleasant-song synaptic weights, the technique will
increase sensitivity to neural oscillations, allowing accurate version among healthful people and people with
psychiatric situations. The numerical findings of the proposed method are accuracy of 96 %, recall of 92 %,
precision of 94 %, and f1-score of 94 %. The AHO-SNN model demonstrated greater accuracy in identifying small
neurophysiological indicators. The method holds giant capacity for advancing psychiatric analysis, permitting
earlier intervention and customized remedy techniques. Future research will focus on combining multimodal
biomarkers and real-time tracking to similarly improve diagnostic precision and clinical applicability, ensuring
a greater, complete and adaptable framework for mental health evaluation.

BILIOGRAPHIC REFERENCES

1. Park SM, Jeong B, Oh DY, Choi CH, Jung HY, Lee JY, Lee D, Choi JS. Identification of major psychiatric
disorders from resting-state electroencephalography using a machine learning approach. Frontiers in Psychiatry.
2021 Aug 18;12:707581. https://doi.org/10.3389/fpsyt.2021.707581

2. Balamurugan B, Mullai M, Soundararajan S, Selvakanmani S, Arun D. Brain-computer interface for
assessment of mental efforts in e-learning using the nonmarkovian queueing model. Computer Applications in
Engineering Education. 2021 Mar;29(2):394-410. https://doi.org/10.1002/cae.22209

3. Uyulan C, Erglizel TT, Unubol H, Cebi M, Sayar GH, Nezhad Asad M, Tarhan N. Major depressive disorder
classification based on different convolutional neural network models: deep learning approach. Clinical EEG
and neuroscience. 2021 Jan;52(1):38-51. https://doi.org/10.1177/1550059420916634

4. Ein Shoka AA, Alkinani MH, El-Sherbeny AS, El-Sayed A, Dessouky MM. Automated seizure diagnosis system
based on feature extraction and channel selection using EEG signals. Brain Informatics. 2021 Dec;8:1-6. https://
doi.org/10.1186/s40708-021-00123-7

5. Farina FR, Emek-Savas DD, Rueda-Delgado L, Boyle R, Kiiski H, Yener G, Whelan R. A comparison of resting
state EEG and structural MRI for classifying Alzheimer’s disease and mild cognitive impairment. Neuroimage.
2020 Jul 15;215:116795. https://doi.org/10.1016/j.neuroimage.2020.116795

6. Pearson R, Pisner D, Meyer B, Shumake J, Beevers CG. A machine learning ensemble to predict treatment
outcomes following an Internet intervention for depression. Psychological medicine. 2019 Oct;49(14):2330-41.
https://doi.org/10.1017/5003329171800315X

7. Das K, PachoriRB. Schizophrenia detection technique using multivariate iterative filtering and multichannel
EEG signals. Biomedical Signal Processing and Control. 2021 May 1;67:102525 https://doi.org/10.1016/j.
bspc.2021.102525

8. Gao S, Calhoun VD, Sui J. Machine learning in major depression: From classification to treatment outcome
prediction. CNS neuroscience & therapeutics. 2018 Nov;24(11):1037-52. https://doi.org/10.1111/cns.13048)

9. Sundaresan A, Penchina B, Cheong S, Grace V, Valero-Cabré A, Martel A. Evaluating deep learning EEG-
based mental stress classification in adolescents with autism for breathing entrainment BCI. Brain Informatics.
2021 Dec;8(1):13. https://doi.org/10.1186/s40708-021-00133-5

10. Geraedts VJ, Koch M, Contarino MF, Middelkoop HA, Wang H, van Hilten JJ, Back TH, Tannemaat MR.
Machine learning for automated EEG-based biomarkers of cognitive impairment during deep brain stimulation
screening in patients with Parkinson’s disease. Clinical Neurophysiology. 2021 May 1;132(5):1041-8. https://doi.
org/10.1016/j.clinph.2021.01.021

11. Gupta A, Siddhad G, Pandey V, Roy PP, Kim BG. Subject-specific cognitive workload classification
using EEG-based functional connectivity and deep learning. Sensors. 2021 Oct 9;21(20):6710. https://doi.
org/10.3390/s521206710

FINANCING
None.

https://doi.org/10.56294/mw2023131


https://doi.org/10.3389/fpsyt.2021.707581
https://doi.org/10.1002/cae.22209
https://doi.org/10.1177/1550059420916634
https://doi.org/10.1186/s40708-021-00123-7
https://doi.org/10.1186/s40708-021-00123-7
https://doi.org/10.1016/j.neuroimage.2020.116795
https://doi.org/10.1017/S003329171800315X
https://doi.org/10.1016/j.bspc.2021.102525
https://doi.org/10.1016/j.bspc.2021.102525
https://doi.org/10.1111/cns.13048
https://doi.org/10.1186/s40708-021-00133-5
https://doi.org/10.1016/j.clinph.2021.01.021
https://doi.org/10.1016/j.clinph.2021.01.021
https://doi.org/10.3390/s21206710
https://doi.org/10.3390/s21206710
https://doi.org/10.56294/mw2023131

Seminars in Medical Writing and Education. 2023; 2:131 10

CONFLICT OF INTEREST
Authors declare that there is no conflict of interest.

AUTHORSHIP CONTRIBUTION
Conceptualization: Kavina Ganapathy, Yogendra Bhati, Suvendu Narayan Mishra.
Data curation: Kavina Ganapathy, Yogendra Bhati, Suvendu Narayan Mishra.
Formal analysis: Kavina Ganapathy, Yogendra Bhati, Suvendu Narayan Mishra.
Drafting - original draft: Kavina Ganapathy, Yogendra Bhati, Suvendu Narayan Mishra.
Writing - proofreading and editing: Kavina Ganapathy, Yogendra Bhati, Suvendu Narayan Mishra.

https://doi.org/10.56294/mw2023131


https://doi.org/10.56294/mw2023131

	Marcador 1
	_Hlk191128965

