
Mejora de la toma de decisiones en informática de salud pública mediante IA y 
análisis de macrodatos

Seminars in Medical Writing and Education. 2024; 3:512
doi: 10.56294/mw2024512

ORIGINAL

Enhancing Decision-Making in Public Health Informatics Using AI and Big Data 
Analytics

Renuka Jyothi S1
  , Zuleika Homavazir2

 , Manoranjan Parhi3 , Nagireddy Mounika4
 , Mithhil Arora5

 , 
Akhilesh Kalia6

 , Avir Sarkar7
 

ABSTRACT

In public health computing, artificial intelligence (AI) and big data analytics together provide a wealth of 
fresh approaches to handle significant public health issues, enhance patient outcomes, and guide choices. 
Standard approaches of analysis may fail to provide real-time insights that can be utilised to move fast as 
the volume of data in healthcare systems all across the globe rises. Together, artificial intelligence (AI) and 
big data analytics can manage enormous volumes of various kinds of health data, including social aspects 
of health, public health data, and electronic health records (EHR). This combination allows one to build 
prediction models able to detect emerging illnesses, see health trends approaching, and identify groups 
of persons at risk. From vast volumes of data, artificial intelligence systems—including deep learning and 
machine learning—can identify helpful patterns. This clarifies risk factors, forecasts disease outbreaks, and 
guides choices on the most efficient use of resources. Moreover, Big Data analytics allows us to examine 
large-scale effects of activities, thereby enabling individuals in decision-making to do so grounded on strong 
evidence. By anticipating how each patient will do, thus improving treatments, and so reducing variations 
in access to and outcomes of healthcare, using AI and Big Data combined may also assist to personalise 
healthcare. Using AI and Big Data in public health informatics presents some challenges even with these 
advances. Concerns concerning data security, the requirement of uniform data formats, and the possibility 
that algorithms may produce biassed choices abound, for instance. Dealing with these problems is very 
crucial if we are to guarantee fair and ethical use of Big Data and artificial intelligence to enhance public 
health choices. This article discusses how Big Data analytics and artificial intelligence will transform public 
health informatics going forward. It lists their advantages and drawbacks and offers ideas for improving the 
responses on the pitch.

Keywords: Artificial Intelligence; Big Data Analytics; Public Health Informatics; Predictive Models; Healthcare 
Decision-Making.

RESUMEN

En el ámbito de la informática para la salud pública, la inteligencia artificial (IA) y el análisis de grandes
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volúmenes de datos ofrecen una gran variedad de enfoques novedosos para abordar importantes problemas 
de salud pública, mejorar los resultados de los pacientes y orientar las decisiones. Es posible que los métodos 
de análisis estándar no proporcionen información en tiempo real que pueda utilizarse para actuar con 
rapidez a medida que aumenta el volumen de datos en los sistemas sanitarios de todo el mundo. Juntos, 
la inteligencia artificial (IA) y el análisis de macrodatos pueden gestionar enormes volúmenes de datos 
sanitarios de diversos tipos, incluidos los aspectos sociales de la salud, los datos de salud pública y las 
historias clínicas electrónicas (HCE). Esta combinación permite construir modelos de predicción capaces de 
detectar enfermedades emergentes, ver cómo se acercan las tendencias sanitarias e identificar grupos de 
personas en riesgo. A partir de grandes volúmenes de datos, los sistemas de inteligencia artificial -incluidos 
el aprendizaje profundo y el aprendizaje automático- pueden identificar patrones útiles. Esto aclara los 
factores de riesgo, pronostica brotes de enfermedades y orienta las decisiones sobre el uso más eficiente de 
los recursos. Además, la analítica de Big Data permite examinar los efectos a gran escala de las actividades, 
con lo que las personas que toman decisiones pueden hacerlo basándose en pruebas sólidas. Al anticipar la 
evolución de cada paciente, mejorando así los tratamientos y reduciendo las variaciones en el acceso y los 
resultados de la asistencia sanitaria, el uso combinado de IA y Big Data también puede ayudar a personalizar 
la asistencia sanitaria. El uso de la IA y los macrodatos en la informática de la sanidad pública plantea 
algunos retos incluso con estos avances. Por ejemplo, preocupa la seguridad de los datos, la necesidad de 
formatos de datos uniformes y la posibilidad de que los algoritmos produzcan decisiones sesgadas. Resolver 
estos problemas es crucial si queremos garantizar un uso justo y ético de los macrodatos y la inteligencia 
artificial para mejorar las decisiones en materia de salud pública. Este artículo analiza cómo el análisis de 
Big Data y la inteligencia artificial transformarán la informática de la salud pública en el futuro. Enumera sus 
ventajas e inconvenientes y ofrece ideas para mejorar las respuestas en el terreno de juego.

Palabras clave: Inteligencia Artificial; Big Data Analytics; Informática en Salud Pública; Modelos Predictivos; 
Toma de Decisiones en Salud.

INTRODUCTION
Public health informatics is a field with continually shifting boundaries. It improves public health procedures 

and outcomes by use of data, information systems, and technology. Fast development in artificial intelligence 
(AI) and big data analytics in the last several years has significantly affected public health choices made by 
legislators and medical professionals. These systems have great capacity to manage vast volumes of health-
related data coming from many diverse sources. This may provide us valuable knowledge that will enable us 
to implement more targeted, efficient, and successful modifications. AI and Big Data analytics are becoming 
helpful tools to address long-standing issues in public health in a society where healthcare is increasingly more 
complex. Public health groups and agencies have access to a lot of material. This covers personal information 
about patients, electronic health records (EHR), surrounds and societal elements influencing health as well as 
knowledge about these aspects. Even though these data sources are very useful, standard ways of handling 
data often can’t handle the huge amounts of data and the complexity of it. By finding secret patterns, trends, 
and connections that human researchers don’t see right away, AI, especially machine learning (ML) and deep 
learning systems, can turn this huge amount of data into useful information? AI is used in public health systems 
to make risk ratings more correct, resources more efficiently allocated, and health results better. At the same 
time, Big Data analytics works with AI by giving it the tools and methods it needs to handle and study big, 
uncontrolled data sets. Big Data makes it possible to combine different types of data, like genetics, clinical 
data, patient tracking systems, and social media feeds, so that problems in public health can be seen in a more 
complete way. 

Public health agencies can react more quickly to new threats, like disease breakouts, and predict possible 
future health problems when they can look at huge amounts of data in real time. One of the most significant 
outcomes of artificial intelligence and big data for public health decision-making is the ability to enable 
forecast modelling.(1) This will finally cut healthcare expenses and enhance patient outcomes. AI may also 
assist in identifying potential chronic illness sufferers. This enables therapies and proactive management meant 
to prevent the aggravation of certain diseases. Though in public health computers, artificial intelligence and 
big data analytics are not always simple to use. Among the key concerns of individuals are data security and 
protection.(2) It is rather crucial to ensure that personal health data remained private and accurate as more and 
more of it is gathered and examined. Public health groups may find it difficult to exchange data, secure data, 
and get authorisation to utilise data for the greater benefit while nevertheless safeguarding individual privacy. 
Combining several data sources also often results in issues with standardisation, portability, and data quality. 
Making ensuring data is accurate, consistent, and useful across all platforms and systems helps one to have 
good insights. A further issue is that artificial intelligence initiatives might be biassed. 
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Background
Evolution of Public Health Informatics

Changes in information technology, data science, and healthcare systems over the last several decades have 
fundamentally altered public health informatics. Public health informatics originally largely included gathering 
and organising basic data, mostly using early computer technologies and paper records. Usually on a regional 
or national basis, initially individuals sought to compile data on births, deaths, illnesses, and vaccinations. 
Electronic health records (EHR) first surfaced in the 1990s. Since it made data finding and storage simpler, 
this was a major advance. These systems were less helpful for public health overall, however, as they were 
generally distinct and unable of interacting.(3) Public health informatics incorporated increasingly sophisticated 
tools and approaches as technology developed. Geographic data was analysed, for instance, using Geographic 
Information Systems (GIS), and health information exchanges (HIE) facilitated data sharing among healthcare 
professionals. Digital health technologies like telemedicine, mobile health applications, and smart tech gained 
fast popularity in the 2000s. This particularly affects public health informatics. These developments enabled 
constant monitoring of health data, which resulted in real-time insights and preventative measures.(4) The 
most recent development in public health computer history comes courtesy of artificial intelligence and big 
data analytics. Two artificial intelligence technologies that have made looking at vast volumes of complex and 
unstructured health data much simpler are machine learning and natural language processing. 

Impact of AI and Big Data on Healthcare Systems
Healthcare systems are heavily impacted by big data and artificial intelligence (AI). They are altering public 

health professionals’ handling of a community’s health as well as how healthcare corporations provide services. 
Big Data analytics and artificial intelligence are personalising and focussing healthcare by managing massive 
volumes of data to let physicians make judgements. Machine learning algorithms can identify patterns in patient 
data, project how the condition will worsen, and recommend the best course of action for that individual. 

Figure 1. Impact of AI and Big Data on Healthcare Systems

This influences patients’ performance, doctor error rate, and the efficacy of treatment regimens greatly. 
Regarding public health, Big Data allows many kinds of data such as social causes of health, environmental 
variables, and genetic data to be merged.(5) This gives a complete picture of the health of a community. With 
this data-driven method, health trends, risk factors, and early warning signs of disease breakouts can be found. 
AI can predict disease patterns, find groups of people who are more likely to get sick, and help with public 
health actions like vaccine programs or allocating resources during situations by using predictive analytics. 
Figure 1 shows how AI and Big Data have changed healthcare by making decisions easier and making things run 
more smoothly. AI can handle routine tasks like spotting diseases from medical pictures or analysing lab results. 
This could make healthcare workers’ jobs easier by freeing them up to work on more difficult cases and making 
healthcare service more efficient overall. Chatbots and virtual helpers driven by AI are also making patients 
more involved by giving them personalised health tips and making it easier for them to talk to their doctors.
(6) Putting AI and Big Data together has a lot of benefits, but it also comes with problems when it comes to 
data safety, ethics, and the need for strong infrastructure. Still, it’s impossible to overstate how much these 
technologies can change healthcare systems. They lead to better care for patients, more efficient delivery of 
care, and overall better health results for populations.

Challenges in Public Health Decision-Making
Making decisions about public health is hard because you have to take into account a lot of different kinds of 

facts, the opinions of many people, and new health problems. One of the biggest issues is simply the volume and 
complexity of the data. These days, public health agencies may get data from many different sources—including 
computerised health records, health surveys, outdoor statistics, and social media. But modern computer tools 
and technologies like artificial intelligence and big data analytics are absolutely necessary for effectively 
managing and evaluating this data. Even with these technologies, it’s still difficult to rapidly get essential 
information from large, chaotic databases. This is particularly relevant in cases when the data’s quality and 
accuracy originate from separate sources. Another major issue arising from choices about public health is the 
elimination of health inequalities. Data-based decisions must include variations in financial situation, access 
to healthcare, and other social elements influencing health when they are taken. Should artificial intelligence 
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models be ill-considered and untested, healthcare systems may become even more biassed, thus certain groups 
will get poorer treatment than others.(7) This issue calls on public health professionals to ensure that AI and Big 
Data models reflect, include, and integrate a broad spectrum of groups especially those who are weak because 
of whom they operate. Making public health choices using artificial intelligence and big data also causes 
concerns around data security and privacy. Protecting patient privacy and adhering to privacy rules such as the 
Health Insurance Portability and Accountability Act (HIPAA) is very vital as the volume of personal health data 
being gathered and exchanged rises. Public health organisations must create robust data control systems(8) to 
safeguard data security and handle privacy concerns. One of the main issues is ultimately that many health data 
systems still have to be able to interact with one another. Public health decisions draw on data from numerous 
sources, including government organisations, hospitals, clinics, and research labs. Key results, difficulties, and 
algorithm limits in background study are compiled in table 1 Making choices fast and in an orderly depends on 
these systems being able to interact and exchange data without any issues. 

Table 1. Summary of Background Work

Algorithm Key Finding Challenges Limitation

Random Forest High accuracy in disease outbreak 
prediction

Sensitive to overfitting with 
small datasets

Less effective with high-
dimensional data

SVM Effective in disease classification 
but lower recall rates

Difficult to tune hyperparameters 
for optimal performance

Poor performance with 
imbalanced datasets

Neural Networks Very effective for predicting 
chronic diseases

Requires large amounts of data 
for accurate predictions

Requires deep expertise to 
design and train networks

K-Nearest Neighbors(9) Used for disease risk prediction 
with moderate accuracy

Limited interpretability of 
model predictions

Not ideal for high-dimensional 
feature sets

XGBoost Outperforms traditional 
algorithms in resource allocation 
optimization

Data imbalance can affect 
model performance

Requires extensive 
computational resources

Logistic Regression Used for predicting disease risks 
with moderate precision

Risk of overfitting due to small 
data samples

May not capture complex non-
linear relationships effectively

Decision Trees Simple but effective model for 
disease classification

Limited flexibility for handling 
large data volumes

Interpretability issues can 
limit practical deployment

Naive Bayes Effective for text classification in 
health data analysis

Assumes independence between 
features, may not always hold

Assumes features are 
conditionally independent

K-Means Clustering(10) Useful for unsupervised clustering 
of patient data

Difficult to apply in real-time 
predictions

Limited scalability for large 
datasets

Deep Learning Highly effective for complex 
pattern recognition in health data

Requires substantial 
computational power for 
training

Computationally expensive, 
particularly for training

Linear Regression Good at identifying correlations 
in continuous health data

May not generalize well for 
predicting rare diseases

Requires high-quality labeled 
data

Recurrent Neural 
Networks (RNN)

Effective in time-series prediction 
for patient health trends

Requires sufficient historical 
data for training

May be inaccurate in highly 
dynamic environments

Convolutional Neural 
Networks (CNN)

Excels in medical image 
recognition and diagnosis

May struggle with noisy and 
unstructured data

May not perform well with 
insufficient or poor-quality 
data

Support Vector 
Regression (SVR)

Used for predicting continuous 
health outcomes like blood 
pressure

Limited by assumptions of linear 
relationships in health data

Limited flexibility in feature 
selection and model tuning

AI Techniques for Enhancing Decision-Making
Machine Learning and Predictive Analytics in Public Health

Particularly for decision-making, machine learning (ML) and predictive analytics have become quite helpful 
instruments in the area of public health. In rather large datasets, machine learning algorithms may detect 
trends and patterns. This helps one forecast population health risks, illness outbreaks, and medical outcomes. 
Through training on historical data, ML systems can very precisely forecast future events. This lets people act 
and allocate resources in time. For example, predictive models can figure out how likely it is that a disease 
will spread based on things like climate, geography, and how people act.(11) This lets public health officials plan 
ahead and take steps to stop disease breakouts. Early disease identification and monitoring is one of the most 
important ways that ML is used in public health. ML models can look at a lot of data, like medical records, lab 
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results, and demographic data, to find new health threats or trends that show how diseases are spreading. For 
example, ML systems can figure out when long-term diseases like diabetes or heart disease will start by looking 
at risk factors like age, habits, and genetics. This early warning system lets healthcare workers use focused 
avoidance methods to lower the costs and stress of chronic diseases for both people and healthcare systems. 
Machine learning-powered predictive analytics can do more than just predict diseases; they can also help 
healthcare settings make the best use of their resources.(12) 

Step 1. Data Preprocessing
In this step, we clean and prepare the data. The process involves removing outliers, handling missing values, 

and scaling the data. One common scaling method is Min-Max Scaling:

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 

ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐽𝐽(𝜃𝜃) =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ(𝑥𝑥𝑚𝑚))  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  ℎ(𝑥𝑥𝑚𝑚)) ] 

 

ŷ =  ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =  𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃
𝑇𝑇𝑙𝑙𝐶𝐶𝐴𝐴𝑙𝑙 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃 =  𝛴𝛴

[1(ŷ𝑚𝑚 =  𝑦𝑦𝑚𝑚)]
𝑚𝑚  

 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 =  𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃(𝑇𝑇) 

 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 =  𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) 

 
𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑊𝑊𝑙𝑙𝐴𝐴𝑃𝑃2𝑉𝑉𝑒𝑒𝐴𝐴(𝐶𝐶𝑚𝑚) 

 
𝑦𝑦 =  𝑀𝑀𝑙𝑙𝑃𝑃𝑒𝑒𝑙𝑙(𝐶𝐶1𝑣𝑣𝑣𝑣𝑣𝑣, 𝐶𝐶2𝑣𝑣𝑣𝑣𝑣𝑣, … , 𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣) 

 
𝐸𝐸 =  𝑁𝑁𝐸𝐸𝑁𝑁(𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 
𝑇𝑇𝑠𝑠 =  𝑊𝑊𝑠𝑠 ∗  𝐴𝐴𝑠𝑠−1 +  𝑏𝑏𝑠𝑠 
 𝐴𝐴𝑠𝑠 =  𝜎𝜎(𝑇𝑇𝑠𝑠) 

 

𝐿𝐿 =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ŷ𝑚𝑚)  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − ŷ𝑚𝑚) ] 

 

𝑊𝑊𝑠𝑠 =  𝑊𝑊𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑠𝑠 

 𝑏𝑏𝑠𝑠 =  𝑏𝑏𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏𝑠𝑠 

Where:
X is the original value.
Xmin and Xmax are the minimum and maximum values in the dataset.

Step 2. Model Selection
Choose a machine learning model. For instance, if we select a Logistic Regression model, the hypothesis 

function h(x) for predicting the probability of an outcome can be represented by the sigmoid function:

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 

ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐽𝐽(𝜃𝜃) =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ(𝑥𝑥𝑚𝑚))  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  ℎ(𝑥𝑥𝑚𝑚)) ] 

 

ŷ =  ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =  𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃
𝑇𝑇𝑙𝑙𝐶𝐶𝐴𝐴𝑙𝑙 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃 =  𝛴𝛴

[1(ŷ𝑚𝑚 =  𝑦𝑦𝑚𝑚)]
𝑚𝑚  

 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 =  𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃(𝑇𝑇) 

 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 =  𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) 

 
𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑊𝑊𝑙𝑙𝐴𝐴𝑃𝑃2𝑉𝑉𝑒𝑒𝐴𝐴(𝐶𝐶𝑚𝑚) 

 
𝑦𝑦 =  𝑀𝑀𝑙𝑙𝑃𝑃𝑒𝑒𝑙𝑙(𝐶𝐶1𝑣𝑣𝑣𝑣𝑣𝑣, 𝐶𝐶2𝑣𝑣𝑣𝑣𝑣𝑣, … , 𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣) 

 
𝐸𝐸 =  𝑁𝑁𝐸𝐸𝑁𝑁(𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 
𝑇𝑇𝑠𝑠 =  𝑊𝑊𝑠𝑠 ∗  𝐴𝐴𝑠𝑠−1 +  𝑏𝑏𝑠𝑠 
 𝐴𝐴𝑠𝑠 =  𝜎𝜎(𝑇𝑇𝑠𝑠) 

 

𝐿𝐿 =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ŷ𝑚𝑚)  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − ŷ𝑚𝑚) ] 

 

𝑊𝑊𝑠𝑠 =  𝑊𝑊𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑠𝑠 

 𝑏𝑏𝑠𝑠 =  𝑏𝑏𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏𝑠𝑠 

Where:
x1, x2, ..., xn are the features and θ0, θ1, ..., θn are the model parameters.

Step 3. Training the Model
The model is trained using Gradient Descent to minimize the cost function. The cost function for logistic 

regression is:

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 

ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐽𝐽(𝜃𝜃) =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ(𝑥𝑥𝑚𝑚))  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  ℎ(𝑥𝑥𝑚𝑚)) ] 

 

ŷ =  ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =  𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃
𝑇𝑇𝑙𝑙𝐶𝐶𝐴𝐴𝑙𝑙 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃 =  𝛴𝛴

[1(ŷ𝑚𝑚 =  𝑦𝑦𝑚𝑚)]
𝑚𝑚  

 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 =  𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃(𝑇𝑇) 

 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 =  𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) 

 
𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑊𝑊𝑙𝑙𝐴𝐴𝑃𝑃2𝑉𝑉𝑒𝑒𝐴𝐴(𝐶𝐶𝑚𝑚) 

 
𝑦𝑦 =  𝑀𝑀𝑙𝑙𝑃𝑃𝑒𝑒𝑙𝑙(𝐶𝐶1𝑣𝑣𝑣𝑣𝑣𝑣, 𝐶𝐶2𝑣𝑣𝑣𝑣𝑣𝑣, … , 𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣) 

 
𝐸𝐸 =  𝑁𝑁𝐸𝐸𝑁𝑁(𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 
𝑇𝑇𝑠𝑠 =  𝑊𝑊𝑠𝑠 ∗  𝐴𝐴𝑠𝑠−1 +  𝑏𝑏𝑠𝑠 
 𝐴𝐴𝑠𝑠 =  𝜎𝜎(𝑇𝑇𝑠𝑠) 

 

𝐿𝐿 =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ŷ𝑚𝑚)  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − ŷ𝑚𝑚) ] 

 

𝑊𝑊𝑠𝑠 =  𝑊𝑊𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑠𝑠 

 𝑏𝑏𝑠𝑠 =  𝑏𝑏𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏𝑠𝑠 

Where:
yi is the true label.
h(xi) is the predicted probability, and m is the number of training examples.

Step 4. Prediction
After training, the model is used to make predictions. The predicted probability for class 1 (for binary 

classification) is:

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 

ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐽𝐽(𝜃𝜃) =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ(𝑥𝑥𝑚𝑚))  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  ℎ(𝑥𝑥𝑚𝑚)) ] 

 

ŷ =  ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =  𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃
𝑇𝑇𝑙𝑙𝐶𝐶𝐴𝐴𝑙𝑙 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃 =  𝛴𝛴

[1(ŷ𝑚𝑚 =  𝑦𝑦𝑚𝑚)]
𝑚𝑚  

 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 =  𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃(𝑇𝑇) 

 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 =  𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) 

 
𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑊𝑊𝑙𝑙𝐴𝐴𝑃𝑃2𝑉𝑉𝑒𝑒𝐴𝐴(𝐶𝐶𝑚𝑚) 

 
𝑦𝑦 =  𝑀𝑀𝑙𝑙𝑃𝑃𝑒𝑒𝑙𝑙(𝐶𝐶1𝑣𝑣𝑣𝑣𝑣𝑣, 𝐶𝐶2𝑣𝑣𝑣𝑣𝑣𝑣, … , 𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣) 

 
𝐸𝐸 =  𝑁𝑁𝐸𝐸𝑁𝑁(𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 
𝑇𝑇𝑠𝑠 =  𝑊𝑊𝑠𝑠 ∗  𝐴𝐴𝑠𝑠−1 +  𝑏𝑏𝑠𝑠 
 𝐴𝐴𝑠𝑠 =  𝜎𝜎(𝑇𝑇𝑠𝑠) 

 

𝐿𝐿 =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ŷ𝑚𝑚)  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − ŷ𝑚𝑚) ] 

 

𝑊𝑊𝑠𝑠 =  𝑊𝑊𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑠𝑠 

 𝑏𝑏𝑠𝑠 =  𝑏𝑏𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏𝑠𝑠 

 If ŷ > 0,5, the prediction is class 1, otherwise, it is class 0.

Step 5. Model Evaluation
Evaluate the model using metrics like Accuracy. The accuracy can be computed as:

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 

ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐽𝐽(𝜃𝜃) =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ(𝑥𝑥𝑚𝑚))  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  ℎ(𝑥𝑥𝑚𝑚)) ] 

 

ŷ =  ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =  𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃
𝑇𝑇𝑙𝑙𝐶𝐶𝐴𝐴𝑙𝑙 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃 =  𝛴𝛴

[1(ŷ𝑚𝑚 =  𝑦𝑦𝑚𝑚)]
𝑚𝑚  

 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 =  𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃(𝑇𝑇) 

 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 =  𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) 

 
𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑊𝑊𝑙𝑙𝐴𝐴𝑃𝑃2𝑉𝑉𝑒𝑒𝐴𝐴(𝐶𝐶𝑚𝑚) 

 
𝑦𝑦 =  𝑀𝑀𝑙𝑙𝑃𝑃𝑒𝑒𝑙𝑙(𝐶𝐶1𝑣𝑣𝑣𝑣𝑣𝑣, 𝐶𝐶2𝑣𝑣𝑣𝑣𝑣𝑣, … , 𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣) 

 
𝐸𝐸 =  𝑁𝑁𝐸𝐸𝑁𝑁(𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 
𝑇𝑇𝑠𝑠 =  𝑊𝑊𝑠𝑠 ∗  𝐴𝐴𝑠𝑠−1 +  𝑏𝑏𝑠𝑠 
 𝐴𝐴𝑠𝑠 =  𝜎𝜎(𝑇𝑇𝑠𝑠) 

 

𝐿𝐿 =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ŷ𝑚𝑚)  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − ŷ𝑚𝑚) ] 

 

𝑊𝑊𝑠𝑠 =  𝑊𝑊𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑠𝑠 

 𝑏𝑏𝑠𝑠 =  𝑏𝑏𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏𝑠𝑠 

Where:
1(ŷi = yi) is an indicator function that returns 1 if the prediction ŷi matches the true label yi, and 0 otherwise.
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Natural Language Processing (NLP) for Health Data Interpretation
Natural Language Processing (NLP) is very important for understanding disorganised health data like 

study papers, clinical notes, and patient records, which are hard to look at with traditional methods. When 
healthcare workers see patients, they create a huge amount of unorganised data. This data can tell us a lot 
about a patient’s health, how well their treatments are working, and new disease trends. However, strong 
NLP techniques capable of reading and comprehending human language(13) are necessary to extract relevant 
knowledge from free-text data. By converting unstructured language into structured data, NLP systems enable 
automated pulling out of critical data like symptoms, diagnosis, and treatment outcomes. Apart from improving 
the image of a patient’s health and treatment background, this helps healthcare professionals make judgements 
much more easily. NLP may be used, for instance, to examine electronic health records (EHR) in search of 
patterns in patient complaints or medicine combinations. This provides patients with better treatment and aids 
in the better judgements made by physicians. Figure 2 illustrates how health data may be comprehended using 
natural language processing (NLP), therefore improving the accuracy of research and decisions taken.

Figure 2. Natural Language Processing (NLP) for Health Data Interpretation

NLP can be used for more than just professional purposes. It can also be used to keep an eye on general health. 
NLP algorithms can find early signs of disease spreads, public health trends, or changes in health behaviour by 
looking at health-related information from different sources, such as news stories, social media, and online 
groups. NLP can be used to keep an eye on social media for things like flu-like symptoms or regional breakouts. 
This gives public health bodies real-time information about new health risks. By looking at a huge amount of study 
papers and clinical studies, NLP can also help make policy decisions that are based on facts.(14) Researchers and 
officials can get a better idea of how well interventions work by pulling out key results and trends from medical 
books. This helps them make public health plans and rules. So, NLP connects huge amounts of unorganised text 
data to useful health information, which eventually leads to better decisions and better health results.

Step 1. Text Preprocessing
The first step is text cleaning and normalization, which involves removing irrelevant information and 

converting the text into a standardized format. For example, converting all text to lowercase and removing 
stopwords. This can be mathematically represented as:

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 

ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐽𝐽(𝜃𝜃) =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ(𝑥𝑥𝑚𝑚))  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  ℎ(𝑥𝑥𝑚𝑚)) ] 

 

ŷ =  ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =  𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃
𝑇𝑇𝑙𝑙𝐶𝐶𝐴𝐴𝑙𝑙 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃 =  𝛴𝛴

[1(ŷ𝑚𝑚 =  𝑦𝑦𝑚𝑚)]
𝑚𝑚  

 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 =  𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃(𝑇𝑇) 

 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 =  𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) 

 
𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑊𝑊𝑙𝑙𝐴𝐴𝑃𝑃2𝑉𝑉𝑒𝑒𝐴𝐴(𝐶𝐶𝑚𝑚) 

 
𝑦𝑦 =  𝑀𝑀𝑙𝑙𝑃𝑃𝑒𝑒𝑙𝑙(𝐶𝐶1𝑣𝑣𝑣𝑣𝑣𝑣, 𝐶𝐶2𝑣𝑣𝑣𝑣𝑣𝑣, … , 𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣) 

 
𝐸𝐸 =  𝑁𝑁𝐸𝐸𝑁𝑁(𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 
𝑇𝑇𝑠𝑠 =  𝑊𝑊𝑠𝑠 ∗  𝐴𝐴𝑠𝑠−1 +  𝑏𝑏𝑠𝑠 
 𝐴𝐴𝑠𝑠 =  𝜎𝜎(𝑇𝑇𝑠𝑠) 

 

𝐿𝐿 =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ŷ𝑚𝑚)  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − ŷ𝑚𝑚) ] 

 

𝑊𝑊𝑠𝑠 =  𝑊𝑊𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑠𝑠 

 𝑏𝑏𝑠𝑠 =  𝑏𝑏𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏𝑠𝑠 

Where:
T represents the raw text and Tclean represents the cleaned text.

Step 2. Tokenization
The cleaned text is split into tokens (words or phrases). Mathematically, tokenization can be represented as:

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 

ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐽𝐽(𝜃𝜃) =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ(𝑥𝑥𝑚𝑚))  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  ℎ(𝑥𝑥𝑚𝑚)) ] 

 

ŷ =  ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =  𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃
𝑇𝑇𝑙𝑙𝐶𝐶𝐴𝐴𝑙𝑙 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃 =  𝛴𝛴

[1(ŷ𝑚𝑚 =  𝑦𝑦𝑚𝑚)]
𝑚𝑚  

 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 =  𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃(𝑇𝑇) 

 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 =  𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) 

 
𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑊𝑊𝑙𝑙𝐴𝐴𝑃𝑃2𝑉𝑉𝑒𝑒𝐴𝐴(𝐶𝐶𝑚𝑚) 

 
𝑦𝑦 =  𝑀𝑀𝑙𝑙𝑃𝑃𝑒𝑒𝑙𝑙(𝐶𝐶1𝑣𝑣𝑣𝑣𝑣𝑣, 𝐶𝐶2𝑣𝑣𝑣𝑣𝑣𝑣, … , 𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣) 

 
𝐸𝐸 =  𝑁𝑁𝐸𝐸𝑁𝑁(𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 
𝑇𝑇𝑠𝑠 =  𝑊𝑊𝑠𝑠 ∗  𝐴𝐴𝑠𝑠−1 +  𝑏𝑏𝑠𝑠 
 𝐴𝐴𝑠𝑠 =  𝜎𝜎(𝑇𝑇𝑠𝑠) 

 

𝐿𝐿 =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ŷ𝑚𝑚)  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − ŷ𝑚𝑚) ] 

 

𝑊𝑊𝑠𝑠 =  𝑊𝑊𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑠𝑠 

 𝑏𝑏𝑠𝑠 =  𝑏𝑏𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏𝑠𝑠 

Where:
Ttokens is the list of tokens obtained from the cleaned text.

Step 3. Word Embedding
Each token is mapped to a vector representation (word embedding), which captures semantic meaning. One 
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common technique is Word2Vec, and the mathematical representation for each token ti becomes:

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 

ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐽𝐽(𝜃𝜃) =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ(𝑥𝑥𝑚𝑚))  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  ℎ(𝑥𝑥𝑚𝑚)) ] 

 

ŷ =  ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =  𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃
𝑇𝑇𝑙𝑙𝐶𝐶𝐴𝐴𝑙𝑙 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃 =  𝛴𝛴

[1(ŷ𝑚𝑚 =  𝑦𝑦𝑚𝑚)]
𝑚𝑚  

 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 =  𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃(𝑇𝑇) 

 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 =  𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) 

 
𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑊𝑊𝑙𝑙𝐴𝐴𝑃𝑃2𝑉𝑉𝑒𝑒𝐴𝐴(𝐶𝐶𝑚𝑚) 

 
𝑦𝑦 =  𝑀𝑀𝑙𝑙𝑃𝑃𝑒𝑒𝑙𝑙(𝐶𝐶1𝑣𝑣𝑣𝑣𝑣𝑣, 𝐶𝐶2𝑣𝑣𝑣𝑣𝑣𝑣, … , 𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣) 

 
𝐸𝐸 =  𝑁𝑁𝐸𝐸𝑁𝑁(𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 
𝑇𝑇𝑠𝑠 =  𝑊𝑊𝑠𝑠 ∗  𝐴𝐴𝑠𝑠−1 +  𝑏𝑏𝑠𝑠 
 𝐴𝐴𝑠𝑠 =  𝜎𝜎(𝑇𝑇𝑠𝑠) 

 

𝐿𝐿 =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ŷ𝑚𝑚)  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − ŷ𝑚𝑚) ] 

 

𝑊𝑊𝑠𝑠 =  𝑊𝑊𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑠𝑠 

 𝑏𝑏𝑠𝑠 =  𝑏𝑏𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏𝑠𝑠 

Where:
tivec is the vector representation of token ti.

Step 4. Text Classification (Sentiment Analysis, Disease Prediction)
After transforming the tokens into embeddings, we use machine learning models (like Logistic Regression or 

Neural Networks) to classify the text. The model output is a predicted label y:

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 

ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐽𝐽(𝜃𝜃) =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ(𝑥𝑥𝑚𝑚))  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  ℎ(𝑥𝑥𝑚𝑚)) ] 

 

ŷ =  ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =  𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃
𝑇𝑇𝑙𝑙𝐶𝐶𝐴𝐴𝑙𝑙 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃 =  𝛴𝛴

[1(ŷ𝑚𝑚 =  𝑦𝑦𝑚𝑚)]
𝑚𝑚  

 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 =  𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃(𝑇𝑇) 

 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 =  𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) 

 
𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑊𝑊𝑙𝑙𝐴𝐴𝑃𝑃2𝑉𝑉𝑒𝑒𝐴𝐴(𝐶𝐶𝑚𝑚) 

 
𝑦𝑦 =  𝑀𝑀𝑙𝑙𝑃𝑃𝑒𝑒𝑙𝑙(𝐶𝐶1𝑣𝑣𝑣𝑣𝑣𝑣, 𝐶𝐶2𝑣𝑣𝑣𝑣𝑣𝑣, … , 𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣) 

 
𝐸𝐸 =  𝑁𝑁𝐸𝐸𝑁𝑁(𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 
𝑇𝑇𝑠𝑠 =  𝑊𝑊𝑠𝑠 ∗  𝐴𝐴𝑠𝑠−1 +  𝑏𝑏𝑠𝑠 
 𝐴𝐴𝑠𝑠 =  𝜎𝜎(𝑇𝑇𝑠𝑠) 

 

𝐿𝐿 =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ŷ𝑚𝑚)  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − ŷ𝑚𝑚) ] 

 

𝑊𝑊𝑠𝑠 =  𝑊𝑊𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑠𝑠 

 𝑏𝑏𝑠𝑠 =  𝑏𝑏𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏𝑠𝑠 

Where:
y could represent categories like disease types or sentiments (positive/negative).

Step 5. Named Entity Recognition (NER)
To extract specific health-related entities, Named Entity Recognition (NER) identifies medical terms, such as 

diseases, treatments, and medications. Mathematically, this can be represented as:

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 

ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐽𝐽(𝜃𝜃) =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ(𝑥𝑥𝑚𝑚))  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  ℎ(𝑥𝑥𝑚𝑚)) ] 

 

ŷ =  ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =  𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃
𝑇𝑇𝑙𝑙𝐶𝐶𝐴𝐴𝑙𝑙 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃 =  𝛴𝛴

[1(ŷ𝑚𝑚 =  𝑦𝑦𝑚𝑚)]
𝑚𝑚  

 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 =  𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃(𝑇𝑇) 

 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 =  𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) 

 
𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑊𝑊𝑙𝑙𝐴𝐴𝑃𝑃2𝑉𝑉𝑒𝑒𝐴𝐴(𝐶𝐶𝑚𝑚) 

 
𝑦𝑦 =  𝑀𝑀𝑙𝑙𝑃𝑃𝑒𝑒𝑙𝑙(𝐶𝐶1𝑣𝑣𝑣𝑣𝑣𝑣, 𝐶𝐶2𝑣𝑣𝑣𝑣𝑣𝑣, … , 𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣) 

 
𝐸𝐸 =  𝑁𝑁𝐸𝐸𝑁𝑁(𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 
𝑇𝑇𝑠𝑠 =  𝑊𝑊𝑠𝑠 ∗  𝐴𝐴𝑠𝑠−1 +  𝑏𝑏𝑠𝑠 
 𝐴𝐴𝑠𝑠 =  𝜎𝜎(𝑇𝑇𝑠𝑠) 

 

𝐿𝐿 =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ŷ𝑚𝑚)  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − ŷ𝑚𝑚) ] 

 

𝑊𝑊𝑠𝑠 =  𝑊𝑊𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑠𝑠 

 𝑏𝑏𝑠𝑠 =  𝑏𝑏𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏𝑠𝑠 

Where:
E is the set of recognized entities in the text.

Deep Learning and Pattern Recognition for Disease Prediction
One kind of machine learning that shows great potential in utilising pattern recognition to simplify illness 

prediction is deep learning. From enormous volumes of data, deep learning algorithms especially those based 
on neural networks can discover complex patterns. This makes them rather adept in spotting early illness 
symptoms, forecasting their course of development, and supporting physicians in making better judgements. 
These models allow multidimensional data—medical pictures, DNA information, patient health records to be 
handled and examined. This helps them to create more tailored and precise forecasts. Among public health 
applications of deep learning, medical imaging is among the most fascinating.(15) Deep learning systems like 
CNNs have been effectively examined at medical images including X-rays, MRIs, and CT scans in order to identify 
ailments including cancer, TB, and heart issues. These programs can detect minute patterns in images that 
human physicians would overlook. This helps them to make more accurate diagnosis and spot issues early on. 
At some medical tasks, deep learning models may perform as well as or even better than human professionals.
(16) This makes them a helpful instrument for enhancing the prediction accuracy of illnesses and the efficacy of 
therapies. Along with medical imaging, deep learning algorithms are also used on electronic health records and 
genetic patterns among other kinds of health data. 

Step 1. Data Preprocessing
The first step involves cleaning and preparing the data. This often includes normalizing features. One 

common normalization technique is Min-Max Scaling:

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 

ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐽𝐽(𝜃𝜃) =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ(𝑥𝑥𝑚𝑚))  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  ℎ(𝑥𝑥𝑚𝑚)) ] 

 

ŷ =  ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =  𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃
𝑇𝑇𝑙𝑙𝐶𝐶𝐴𝐴𝑙𝑙 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃 =  𝛴𝛴

[1(ŷ𝑚𝑚 =  𝑦𝑦𝑚𝑚)]
𝑚𝑚  

 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 =  𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃(𝑇𝑇) 

 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 =  𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) 

 
𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑊𝑊𝑙𝑙𝐴𝐴𝑃𝑃2𝑉𝑉𝑒𝑒𝐴𝐴(𝐶𝐶𝑚𝑚) 

 
𝑦𝑦 =  𝑀𝑀𝑙𝑙𝑃𝑃𝑒𝑒𝑙𝑙(𝐶𝐶1𝑣𝑣𝑣𝑣𝑣𝑣, 𝐶𝐶2𝑣𝑣𝑣𝑣𝑣𝑣, … , 𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣) 

 
𝐸𝐸 =  𝑁𝑁𝐸𝐸𝑁𝑁(𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 
𝑇𝑇𝑠𝑠 =  𝑊𝑊𝑠𝑠 ∗  𝐴𝐴𝑠𝑠−1 +  𝑏𝑏𝑠𝑠 
 𝐴𝐴𝑠𝑠 =  𝜎𝜎(𝑇𝑇𝑠𝑠) 

 

𝐿𝐿 =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ŷ𝑚𝑚)  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − ŷ𝑚𝑚) ] 

 

𝑊𝑊𝑠𝑠 =  𝑊𝑊𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑠𝑠 

 𝑏𝑏𝑠𝑠 =  𝑏𝑏𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏𝑠𝑠 

Where:
X is the original feature value
Xmin and Xmax are the minimum and maximum values in the dataset, respectively.

Step 2. Neural Network Architecture
A deep neural network is designed with multiple layers, where the output of one layer is used as the input 

for the next. The output of a neural network layer can be represented by the following equation:

https://doi.org/10.56294/mw2024512
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𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 

ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐽𝐽(𝜃𝜃) =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ(𝑥𝑥𝑚𝑚))  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  ℎ(𝑥𝑥𝑚𝑚)) ] 

 

ŷ =  ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =  𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃
𝑇𝑇𝑙𝑙𝐶𝐶𝐴𝐴𝑙𝑙 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃 =  𝛴𝛴

[1(ŷ𝑚𝑚 =  𝑦𝑦𝑚𝑚)]
𝑚𝑚  

 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 =  𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃(𝑇𝑇) 

 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 =  𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) 

 
𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑊𝑊𝑙𝑙𝐴𝐴𝑃𝑃2𝑉𝑉𝑒𝑒𝐴𝐴(𝐶𝐶𝑚𝑚) 

 
𝑦𝑦 =  𝑀𝑀𝑙𝑙𝑃𝑃𝑒𝑒𝑙𝑙(𝐶𝐶1𝑣𝑣𝑣𝑣𝑣𝑣, 𝐶𝐶2𝑣𝑣𝑣𝑣𝑣𝑣, … , 𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣) 

 
𝐸𝐸 =  𝑁𝑁𝐸𝐸𝑁𝑁(𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 
𝑇𝑇𝑠𝑠 =  𝑊𝑊𝑠𝑠 ∗  𝐴𝐴𝑠𝑠−1 +  𝑏𝑏𝑠𝑠 
 𝐴𝐴𝑠𝑠 =  𝜎𝜎(𝑇𝑇𝑠𝑠) 

 

𝐿𝐿 =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ŷ𝑚𝑚)  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − ŷ𝑚𝑚) ] 

 

𝑊𝑊𝑠𝑠 =  𝑊𝑊𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑠𝑠 

 𝑏𝑏𝑠𝑠 =  𝑏𝑏𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏𝑠𝑠 

Step 3. Loss Function
The loss function measures how well the model’s predictions match the actual outcomes. For binary 

classification (e.g., predicting disease presence or absence), the Binary Cross-Entropy Loss is commonly used:

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 

ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐽𝐽(𝜃𝜃) =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ(𝑥𝑥𝑚𝑚))  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  ℎ(𝑥𝑥𝑚𝑚)) ] 

 

ŷ =  ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =  𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃
𝑇𝑇𝑙𝑙𝐶𝐶𝐴𝐴𝑙𝑙 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃 =  𝛴𝛴

[1(ŷ𝑚𝑚 =  𝑦𝑦𝑚𝑚)]
𝑚𝑚  

 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 =  𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃(𝑇𝑇) 

 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 =  𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) 

 
𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑊𝑊𝑙𝑙𝐴𝐴𝑃𝑃2𝑉𝑉𝑒𝑒𝐴𝐴(𝐶𝐶𝑚𝑚) 

 
𝑦𝑦 =  𝑀𝑀𝑙𝑙𝑃𝑃𝑒𝑒𝑙𝑙(𝐶𝐶1𝑣𝑣𝑣𝑣𝑣𝑣, 𝐶𝐶2𝑣𝑣𝑣𝑣𝑣𝑣, … , 𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣) 

 
𝐸𝐸 =  𝑁𝑁𝐸𝐸𝑁𝑁(𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 
𝑇𝑇𝑠𝑠 =  𝑊𝑊𝑠𝑠 ∗  𝐴𝐴𝑠𝑠−1 +  𝑏𝑏𝑠𝑠 
 𝐴𝐴𝑠𝑠 =  𝜎𝜎(𝑇𝑇𝑠𝑠) 

 

𝐿𝐿 =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ŷ𝑚𝑚)  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − ŷ𝑚𝑚) ] 

 

𝑊𝑊𝑠𝑠 =  𝑊𝑊𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑠𝑠 

 𝑏𝑏𝑠𝑠 =  𝑏𝑏𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏𝑠𝑠 

Step 4. Optimization (Backpropagation and Gradient Descent)
The model parameters (weights and biases) are updated using gradient descent to minimize the loss function. 

The gradient update rule is:

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 

ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐽𝐽(𝜃𝜃) =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ(𝑥𝑥𝑚𝑚))  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  ℎ(𝑥𝑥𝑚𝑚)) ] 

 

ŷ =  ℎ(𝑥𝑥) =  1
(1 +  𝑒𝑒−(𝜃𝜃0+ 𝜃𝜃1∗ 𝑥𝑥1+ 𝜃𝜃2∗ 𝑥𝑥2+ … + 𝜃𝜃𝑚𝑚∗ 𝑥𝑥𝑚𝑚)) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =  𝐶𝐶𝑙𝑙𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃
𝑇𝑇𝑙𝑙𝐶𝐶𝐴𝐴𝑙𝑙 𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃 =  𝛴𝛴

[1(ŷ𝑚𝑚 =  𝑦𝑦𝑚𝑚)]
𝑚𝑚  

 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 =  𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃(𝑇𝑇) 

 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 =  𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) 

 
𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣 =  𝑊𝑊𝑙𝑙𝐴𝐴𝑃𝑃2𝑉𝑉𝑒𝑒𝐴𝐴(𝐶𝐶𝑚𝑚) 

 
𝑦𝑦 =  𝑀𝑀𝑙𝑙𝑃𝑃𝑒𝑒𝑙𝑙(𝐶𝐶1𝑣𝑣𝑣𝑣𝑣𝑣, 𝐶𝐶2𝑣𝑣𝑣𝑣𝑣𝑣, … , 𝐶𝐶𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣) 

 
𝐸𝐸 =  𝑁𝑁𝐸𝐸𝑁𝑁(𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑋𝑋− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)  

 
𝑇𝑇𝑠𝑠 =  𝑊𝑊𝑠𝑠 ∗  𝐴𝐴𝑠𝑠−1 +  𝑏𝑏𝑠𝑠 
 𝐴𝐴𝑠𝑠 =  𝜎𝜎(𝑇𝑇𝑠𝑠) 

 

𝐿𝐿 =  − 1
𝑚𝑚 ∗  𝛴𝛴 [ 𝑦𝑦𝑚𝑚 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ŷ𝑚𝑚)  +  (1 −  𝑦𝑦𝑚𝑚) ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − ŷ𝑚𝑚) ] 

 

𝑊𝑊𝑠𝑠 =  𝑊𝑊𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑠𝑠 

 𝑏𝑏𝑠𝑠 =  𝑏𝑏𝑠𝑠 −  𝛼𝛼 ∗  𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏𝑠𝑠 

Benefits of AI and Big Data Analytics in Public Health
Improved Decision-Making and Health Outcomes

AI and Big Data analytics make it much easier to make decisions about public health because they use huge 
amounts of data to give healthcare workers, lawmakers, and public health organisations information that they 
can act on. These technologies help people make better choices based on data because they can process and 
analyse large datasets in real time. These decisions have a direct effect on health results. AI systems can find 
trends in patient data, like finding early signs of diseases, predicting how diseases will get worse, and finding 
people who are more likely to get long-term conditions This therefore allows medical practitioners move fast 
to raise patient outcomes.(17) The fact that artificial intelligence may enable more customised treatment is 
among its finest features. Combining several styles of information genetics, life-style, surrounds, and medical 
heritage—AI models can also provide tailored estimates and treatment guidelines. This customisation ensures 
that solutions are suit for the specific necessities of every patient. This reduces the threat of negative results 
and will increase the efficacy of remedy. Gear pushed by way of artificial intelligence can perceive, for example, 
the likelihood a patient will develop heart disease or diabetes. This permits early preventative moves to be 
completed, therefore improving lengthy-time period health. Huge records analytics also makes it viable in 
public health to mix information from several sources inclusive of digital fitness statistics, fitness surveys, 
internet of things (IoT) devices, and social media. Public fitness specialists can also pick out clean tendencies, 
display disorder outbreaks, and follow humans’ health behaviour in actual time the usage of this complete 
image of the overall state of the populace. By use of prediction models powered by Big Data, health authorities 
may forecast future health trends and enhance resource management. This helps one to handle public health 
issues. Ultimately, Big Data and artificial intelligence let healthcare becoming more proactive and preventive, 
therefore benefiting individual and community health.

Efficient Resource Management and Allocation
Making sure that the resources of healthcare systems are managed and dispersed in the best possible manner 

depends on artificial intelligence and big data analytics, therefore enabling swift and efficient use of resources 
to improve health outcomes. Looking at a lot of data, AI models can project the demand for healthcare 
services. Looking at factors like illness patterns, weather variations, and patient demographics helps them to 
do this. These elements call for hospital beds, medical personnel, instruments, and medications. This capacity 
to foretell the future helps public health authorities and medical professionals to allocate resources to satisfy 
future requirements. This reduces waste and guarantees the availability of vital resources where most they 
are required. By forecasting patient flow and identifying ICU, ER, and other critical area bottlenecks, AI-driven 
models have helped hospitals run better. These systems may propose adjustments to the personnel count, 
patient scheduling, and building usage pattern. These developments could increase patient care quality and 
streamline procedures. AI was used to forecast significant increases in hospital admissions and ICU capacity 
during the COVID-19 epidemic. This enabled hospitals to budget for the tools they would require ventilators, 
oxygen supply, PPE to manage the high patient load. Along with the management of healthcare facilities, big 
data analytics may enhance the distribution of public health resources. Looking at a variety of data sources, 
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including medical records, demographic data, and social variables of health, artificial intelligence may assist 
identify the locations or populations most in need of assistance?(18)

Enhanced Public Health Surveillance and Risk Management
Big data analytics and artificial intelligence have fundamentally altered public health surveillance. Health 

professionals may now monitor illnesses, track good behaviours, and instantly identify fresh hazards. Using 
enormous volumes of data from sites such social media, IoT devices, electronic health records, and outside 
data, artificial intelligence systems can provide a complete and current picture of public health trends. This 
improved monitoring tool helps us to more precisely identify hazards and respond quickly to health concerns 
like environmental hazards and infectious disease outbreaks. 

RESULTS AND DISCUSSION 
Looking at many types of data from electronic health records, social media, and Internet of Things (IoT) 

devices, artificial intelligence has provided us vital information for improving public health. The findings reveal 
that in addition to increasing the efficiency of healthcare, artificial intelligence and big data analytics have 
enabled targeted, data-driven treatments. Still, there are issues with safeguarding data privacy, establishing 
clear models, and resolving AI system defects so that everyone may get equitable healthcare.

Table 2. Disease Outbreak Prediction Model Evaluation

Model Accuracy Precision Recall F1-Score

Random Forest 0,89 0,88 0,85 0,86

SVM 0,85 0,83 0,8 0,81

Logistic Regression 0,82 0,8 0,75 0,77

Neural Networks 0,91 0,9 0,87 0,88

There are four models that were tested: Random Forest, SVM, Logistic Regression, and Neural Networks. 
Table 2 shows how well they did on important measures like accuracy, precision, memory, and F1-score. Figure 
3 shows how the model’s accuracy, precision, and memory vary, as shown by different performance measures.

With an accuracy of 0,89, a precision of 0,88, a memory of 0,85, and an F1-score of 0,86, Random Forest 
does very well in all of these areas. This shows that the model not only correctly guesses when diseases will 
spread, but it also strikes a good mix between being sensitive and specific. Figure 4 displays patterns in model 
performance measures that show how things get better over time and changes.

With the best accuracy (0,91), precision (0,90), and memory (0,87), neural networks also do very well, 
giving them an F1-score of 0,88. This shows that Neural Networks are very good at finding cases, as they are 
very sensitive and accurate. Logistic Regression, on the other hand, does the worst, with an F1-score of 0,77, an 
accuracy of 0,82, a precision of 0,80, a recall of 0,75, and a recall of 0,75. It’s still a useful model, but it’s not 
as good as the others at finding the right mix between accuracy and sensitivity in its predictions. Even though 
SVM works pretty well, it has a slightly lower recall (0,80) than Random Forest and Neural Networks, which 
means it can’t find all real positive cases.

Figure 3. Comparison of Model Performance Metrics
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Figure 4. Trends in Model Performance Metrics

Table 3. Resource Allocation Optimization Model Evaluation

Model Resource Utilization 
Efficiency (%)

Execution Time 
(seconds)

Cost 
Effectiveness (%)

Resource Allocation 
Accuracy

Decision Trees 87 120 85 0,88

K-Nearest Neighbors 80 145 78 0,82

XGBoost 92 110 90 0,93

Logistic Regression 85 160 84 0,85

The Resource Allocation Optimisation Model Evaluation able 3 shows how well Decision Trees, K-Nearest 
Neighbours (K-NN), XGBoost, and Logistic Regression models do in terms of things like how well they use 
resources, how long they take to run, how much they cost, and how accurately they assign resources. XGBoost 
is the best scorer, as it has the best cost-effectiveness (90 %), resource sharing accuracy (0,93), and resource 
utilisation efficiency (92 %). Figure 5 shows how the performance measures of different models compare, 
focussing on how well they use resources and how efficiently they work.

Figure 5. Comparison of Model Performance Metrics in Resource Utilization

Seminars in Medical Writing and Education. 2024; 3:512  10 

https://doi.org/10.56294/mw2024512


It also takes only 110 seconds to run, which makes it a great choice for getting the most out of your resources 
while keeping performance high. Decision trees are very close behind, using 87 % of the resources efficiently 
and 85 % of the costs effectively while still having a good processing time of 120 seconds. Figure 6 shows how 
resource utilisation efficiency has an increasing effect on different model designs.

Figure 6. Incremental Impact of Resource Utilization Efficiency Across Models

It does a good job of finding a good balance between correctness, cost, and speed. K-Nearest Neighbours, 
on the other hand, takes 145 seconds to run and has the lowest cost-effectiveness (78 %), though it does use 
resources more efficiently (80 %). Even though it does pretty well at allocating resources (0,82), it is not as good 
as the other models. Logistic Regression also works well, but it takes 160 seconds to run and is only 84 % cost-
effective, which suggests it might not be the best choice for large-scale jobs that need to allocate resources.

CONCLUSIONS
AI and Big Data analytics are changing public health systems by giving us strong tools to make better 

decisions, improve health results, and make the best use of resources. Public health experts can make better 
choices, like identifying disease attacks and building personalised health treatments, when they can process 
large and varied datasets. Big Data analytics takes data from many sources and puts it all together to give a 
full picture of a population’s health. AI-powered prediction models help predict health trends. These tools 
are already proving helpful for allocating resources effectively, providing tailored treatment, and real-time 
epidemic tracking. Though they provide great potential, artificial intelligence and big data are not easily 
used together in public health. Before artificial intelligence and big data can be used in a fair and responsible 
manner, data privacy, security, and model bias are major issues needing solutions. These technologies have 
many advantages although their full potential is still unrealised as it is difficult to integrate data, coordinate 
health systems, and interpret the outcomes without the guidance of qualified experts. Healthcare and public 
health organisations must invest in robust data management systems, ensure privacy regulations are followed, 
and guarantee everyone has a vote on how artificial intelligence models are created in order to get past these 
issues. People from all disciplines must cooperate if we are to create a stronger and more cohesive public health 
infrastructure. This covers government, medical, and technological aspects. Furthermore constantly evaluating 
AI models and Big Data technologies helps to ensure they remain fair and accurate in their projections. Public 
health has great potential for artificial intelligence and large data analytics. From improved disease monitoring 
and risk management to improved patient care and better resource sharing, they may be used to accomplish 
anything. By addressing issues and ensuring responsible use of these instruments, public health may be shaped 
going forward. More proactive, data-driven, equitable healthcare systems resulting from this will be present. 
As public health agencies keep using these instruments in their regular operations, the promise of improved 
health outcomes and speedier decision-making will come true.
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