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ABSTRACT

Introduction: virtual Reality (VR) and Augmented Reality (AR) are increasingly integrated into medical 
education, offering immersive and interactive environments for safe clinical training. Several theoretical 
frameworks—Technology Acceptance Model (TAM), Self-Determination Theory (SDT), Task-Technology Fit (TTF), 
and Flow Theory—can explain technology adoption and learning effectiveness. However, no comprehensive 
empirical comparison has been conducted within the context of VR/AR-based medical education.
Method: a cross-sectional survey was conducted with 329 undergraduate medical and health sciences 
students who had prior experience using VR/AR for learning activities. Validated instruments representing 
each theoretical framework were employed. Data were analyzed using Partial Least Squares Structural 
Equation Modeling (PLS-SEM) to evaluate reliability, validity, and structural relationships, followed by a 
comparative assessment using R², Q², f², and path coefficients.
Results: flow Theory demonstrated the strongest explanatory power (R² up to 0,72), with immersion and 
engagement as critical predictors of learning outcomes. SDT also showed high predictive strength (R² up 
to 0,63), emphasizing the role of intrinsic motivation. TTF was effective in predicting task-related learning 
effectiveness (R² = 0,67), whereas TAM provided only moderate explanatory power (R² ≈ 0,41–0,46).
Conclusions: flow Theory and SDT offer the most comprehensive explanations of student engagement and 
learning outcomes in VR/AR medical education. TTF remains valuable for task-specific alignment, while TAM 
primarily captures initial usability perceptions. Overall, immersive and motivational factors are key drivers 
of effective VR/AR learning, providing guidance for both theoretical development and instructional design 
in medical training.

Keywords: Virtual Reality; Augmented Reality; Medical Education; Student Engagement; Learning Outcomes.

RESUMEN

Introducción: la Realidad Virtual (VR) y la Realidad Aumentada (AR) se integran cada vez más en la educación 
médica, ofreciendo entornos inmersivos e interactivos para una formación clínica segura. Varios marcos 
teóricos—el Modelo de Aceptación de la Tecnología (TAM), la Teoría de la Autodeterminación (SDT), el Ajuste 
Tarea-Tecnología (TTF) y la Teoría del Flow—pueden explicar la adopción tecnológica y la efectividad del 
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aprendizaje. Sin embargo, no se ha realizado aún una comparación empírica integral en el contexto de la  
educación médica basada en VR/AR.
Método: se llevó a cabo una encuesta transversal con 329 estudiantes de grado en medicina y ciencias de la 
salud que tenían experiencia previa en actividades de aprendizaje con VR/AR. Se emplearon instrumentos 
validados que representaban cada marco teórico. Los datos se analizaron utilizando Modelado de Ecuaciones 
Estructurales por Mínimos Cuadrados Parciales (PLS-SEM) para evaluar la fiabilidad, validez y relaciones 
estructurales, seguido de una evaluación comparativa basada en R², Q², f² y coeficientes de trayectoria.
Resultados: la Teoría del Flow demostró el mayor poder explicativo (R² hasta 0,72), con la inmersión y la 
implicación como predictores críticos de los resultados de aprendizaje. La SDT también mostró una alta 
capacidad predictiva (R² hasta 0,63), destacando el papel de la motivación intrínseca. El TTF fue eficaz 
para predecir la efectividad del aprendizaje relacionado con las tareas (R² = 0,67), mientras que el TAM 
proporcionó solo un poder explicativo moderado (R² ≈ 0,41–0,46).
Conclusiones: la Teoría del Flow y la SDT ofrecen las explicaciones más completas de la implicación estudiantil 
y los resultados de aprendizaje en la educación médica basada en VR/AR. El TTF sigue siendo valioso para la 
alineación específica con la tarea, mientras que el TAM captura principalmente las percepciones iniciales de 
usabilidad. En general, los factores de inmersión y motivación son impulsores clave del aprendizaje efectivo 
con VR/AR, proporcionando orientación tanto para el desarrollo teórico como para el diseño instruccional en 
la formación médica.

Palabras clave: Realidad Virtual; Realidad Aumentada; Educación Médica; Compromiso Estudiantil; Resultados 
de Aprendizaje.

INTRODUCTION
Virtual Reality (VR) and Augmented Reality (AR) technologies are fundamentally reshaping the landscape 

of medical education by offering unprecedented immersive and interactive learning environments.(1,2) These 
advanced simulations allow students to visualize complex anatomical structures in three dimensions, practice 
intricate surgical procedures in risk-free settings, and develop critical clinical decision-making skills, thereby 
effectively bridging the gap between theoretical knowledge and practical application.(3,4,5)

 The rapid integration of these technologies into medical curricula worldwide underscores their potential to 
overcome traditional educational limitations while enhancing learning outcomes and patient safety.(6,7)Several 
well-established theoretical frameworks provide distinct perspectives on technology adoption and learning 
effectiveness. The Technology Acceptance Model (TAM) posits that perceived usefulness and ease of use are 
fundamental drivers of technology adoption.(8,9) In the context of VR/AR medical education, these relationships 
can be statistically examined by modeling that: Perceived Ease of Use is expected to positively influence 
Perceived Usefulness, (10,11) which in turn, along with Perceived Ease of Use, is anticipated to enhance Student 
Engagement.(12,13,14) Increased Student Engagement is further expected to contribute to improved Learning 
Outcomes.

Self-Determination Theory (SDT) offers a complementary perspective by emphasizing the role of intrinsic 
motivation through the satisfaction of three basic psychological needs. The hypotheses derived from SDT 
propose that: (H1) Autonomy positively affects Motivation; (H2) Competence positively affects Motivation; (H3) 
Relatedness positively affects Motivation; which in turn (H4) Motivation positively affects Student Engagement; 
and finally (H5) Student Engagement positively affects Learning Outcomes.

The Task-Technology Fit (TTF) model provides a pragmatic framework focusing on the alignment between 
technological capabilities and educational tasks.(15) This model generates hypotheses stating that: (H1) Task 
Characteristics positively affect Task-Technology Fit;(16) (H2) Technology Characteristics positively affect Task-
Technology Fit; (17,18) and (H3) Task-Technology Fit positively affects Learning Effectiveness.(19,20) Flow Theory 
captures the experiential aspect of learning through VR/AR, proposing that optimal learning occurs when 
students achieve a state of deep immersion and engagement.(21,22) The corresponding hypotheses suggest 
that: (H1) Challenge-Skill Balance positively affects Immersion;(23) (H2) Concentration positively affects 
Immersion;(24,25) (H3) Enjoyment positively affects Immersion; followed by (H4) Immersion positively affects 
Student Engagement;(26) and (H5) Student Engagement positively affects Learning Outcomes.(27)

Despite the individual explanatory power of these theoretical frameworks, a significant research gap exists 
in the empirical comparison of their relative effectiveness in predicting learning outcomes in VR/AR-based 
medical education.(28) No previous study has simultaneously tested these four models within the same research 
context using a robust methodological approach, leaving educators and instructional designers without clear 
guidance on which theoretical perspective should primarily inform the development and implementation of VR/
AR interventions in medical training.
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This study aims to address this critical gap by conducting a comprehensive comparative analysis of TAM, SDT, 
TTF, and Flow Theory using Partial Least Squares Structural Equation Modeling (PLS-SEM). The research seeks 
to identify which theoretical framework offers the strongest explanatory power for student engagement and 
learning outcomes in VR/AR-enhanced medical education, thereby providing evidence-based recommendations 
for optimizing immersive learning experiences. The complete research framework illustrating all hypothesized 
relationships across the four theoretical models is presented in figure 1.

Figure 1. Conceptual frameworks of the study

METHOD
Research Design

This study employed a cross-sectional survey design to compare four theoretical models—Technology 
Acceptance Model (TAM), Self-Determination Theory (SDT), Task-Technology Fit (TTF), and Flow Theory—in the 
context of VR/AR-based medical education.(29,30,31) 

Participants
Respondents were undergraduate students enrolled in medical and health sciences programs at accredited 

institutions. A purposive sampling strategy was employed because the study specifically required participants 
who had prior experience using VR/AR for learning activities—an exposure that is not yet universal among 
students. While purposive sampling is non-probabilistic and carries a potential risk of selection bias, it was 
the most appropriate approach to ensure that data were collected from individuals with relevant experiential 
knowledge, thereby enhancing the validity of the findings for the intended research context.

Participants were recruited through class announcements by lecturers, and posts on learning management 
systems (LMS). This approach ensured that only students with prior VR/AR exposure were invited to participate, 
while preserving voluntary participation and informed consent.

Sample size adequacy was assessed using the widely applied “10-times rule” for PLS-SEM, which indicated 
that the minimum required sample size was substantially lower than the final sample (n = 329). Furthermore, this 
sample size is well above general recommendations in the PLS-SEM literature for achieving sufficient statistical 
power to detect small-to-medium effect sizes at a conventional power level (0,80), providing confidence that 
the analysis was adequately powered. Demographic characteristics such as study program, institution type, 
gender, age, academic year, VR/AR usage frequency, and training background are summarized in table 1.

Instruments
The measurement instruments were adapted from well-established, validated scales in prior research, with 

careful attention to content validity and construct alignment. Each construct was measured using multiple 
items on a 7-point Likert scale (1 = strongly disagree, 7 = strongly agree).

For the Technology Acceptance Model (TAM), the constructs of Perceived Ease of Use and Perceived Usefulness 
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were adapted from Davis and subsequent VR/AR extensions of TAM by Jang et al. and Fussell & Truong. Student 
Engagement items were adapted from Fredricks et al., while Immersion was measured using items adapted 
from Jennett et al. to capture presence and absorption in virtual environments. Learning Outcomes items were 
adapted from educational technology studies evaluating VR/AR learning effectiveness.

For the Self-Determination Theory (SDT) model, the constructs of Autonomy, Competence, and Relatedness 
were adapted from the Basic Psychological Need Satisfaction scale developed by Ryan & Deci and applied 
in digital learning contexts. Motivation items were drawn from validated intrinsic motivation scales used in 
educational technology research. Student Engagement and Learning Outcomes were measured using the same 
scales as in TAM for comparability.

For the Task-Technology Fit (TTF) model, Task Characteristics and Technology Characteristics were adapted 
from Goodhue & Thompson’s original TTF instrument, with contextual adjustments for medical learning tasks. 
Task-Technology Fit and Learning Effectiveness items were also adapted from these sources to measure the 
perceived alignment between the VR/AR tool and the learning requirements.

For Flow Theory, the constructs of Challenge-Skill Balance, Concentration, and Enjoyment were adapted 
from Csikszentmihalyi’s Flow Questionnaire and subsequent adaptations for virtual learning environments. 
Immersion items were again taken from Jennett et al. to ensure consistency across models.

Prior to full data collection, a pilot test was conducted with a small group of students (n ≈ 30) to ensure item 
clarity and contextual relevance. Results indicated good internal consistency, leading only to minor wording 
adjustments. Subsequent measurement model evaluation using PLS-SEM confirmed the reliability (Cronbach’s 
α and Composite Reliability > 0,70 for all constructs) and convergent validity (Average Variance Extracted > 
0,50), as well as discriminant validity (HTMT < 0,90), confirming that the instruments adequately captured the 
intended theoretical constructs.

Table 1. Demographic characteristics of respondents
Demographic Variable Category Frequency 

(n=329)
Percentage (%)

Study Medicine (MD) 120 36 %
Nursing 50 15 %

Dentistry 35 11 %
Physiotherapy 20 6 %

Pharmacy 25 8 %
Medical Laboratory Tech 18 5 % 

Radiology / Medical Imaging 15 5 % 
Public Health 12 4 %

Midwifery 34 10 %
Institution Type Public 210 64 %

Private 119 36 %
Gender Male 87 26 %

Female 242 74 %
Age <20 20 6 %

20–22 180 55 %
23–25 90 27 %
>25 39 12 %

Academic Year Year 1 35 11 %
Year 2 88 27 %
Year 3 96 29 %
Year 4 44 13 %
Year 5+ 40 12 %

Internship / Clinical rotation 26 8 %
VR/AR Usage Frequency Never 18 5 %

Monthly 209 64 %
Weekly 61 19 %

Several times/week 22 7 %
Daily 19 6 %

Typical Session Length <15 min 23 7 %
15–30 min 136 41 %
31–60 min 121 37 %
>60 min 39 12 %
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Primary Learning Use of 
VR/AR*

Anatomy 293 46 %
Procedural skills / simulation 199 31 %
Diagnostics / decision-making 48 8 %

Patient communication 15 2 %
Rehabilitation / 
physiotherapy

38 6 %

Other 44 7 %
Primary Device* PC-tethered VR 13 3 %

Standalone VR 59 14 %
AR headset 35 8 %
Mobile AR 301 70 %

Desktop monitor only 24 6 %
Access to Facilities* Personal device at home 41 8 %

Campus simulation lab 201 42 %
Hospital / teaching lab 193 40 %
Shared device (group) 30 6 %

None 18 4 %
Experience with Digital 
Platforms

Very low 1 0 %
Low 15 5 %

Moderate 128 39 %
High 99 30 %

Very high 86 26 %
Internet Quality for VR Poor 0 0 %

Fair 39 12 %
Good 163 50 %

Excellent 127 39 %
Training / Orientation 
on VR

None 0 0 %
Brief (≤1 hour) 221 67 %

Short course (1–3 hours) 94 29 %
Structured training (>3 hours) 14 4 %

Note: respondents could select more than one option, so the total percentage based on 
respondents exceeds 100 %.

The complete set of constructs, item codes, and references is presented in table 2.

Table 2. Measurement constructs and items
Construct Code Statement Reference/ 

Adaptation
TAM Perceived Ease of Use 

(PEOU)
PEOU1 I find the use of VR/AR in medical learning easy to understand. (32,33,34,35)

PEOU2 Interaction with the VR/AR system feels clear and simple.
PEOU3 Learning using VR/AR does not require much effort.

Perceived Usefulness 
(PU)

PU1 VR/AR helps me improve my understanding of medical 
material.

PU2 The use of VR/AR increases my learning effectiveness.
PU3 Learning with VR/AR makes me more confident in my clinical 

skills.
Student Engagement 
(SE)

SE1 I feel actively involved when using VR/AR for learning.
SE2 I pay full attention when using VR/AR.
SE3 VR/AR makes the learning process more interesting and 

enjoyable.
Immersion (IM) IM1 I feel as if I am inside a virtual learning environment.

IM2 When learning with VR/AR, I am completely immersed in the 
experience.

IM3 I forget my surroundings when using VR/AR.
Learning Outcomes 
(LO)

LO1 VR/AR helps me understand medical concepts better than 
traditional methods.

LO2 After using VR/AR, I can remember the material longer.
LO3 VR/AR improves my ability to apply clinical skills.
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SDT Autonomy (AU) AU1 I feel free to choose how I learn using VR/AR. (32,33,34)

AU2 VR/AR gives me control over my learning process.
AU3 I can customize the VR/AR learning experience to suit my 

needs.
Competence (CO) CO1 VR/AR helps me feel capable of mastering medical skills.

CO2 I feel confident in my abilities when learning using VR/AR.
CO3 VR/AR provides challenges that match my abilities.

Relatedness (RE) RE1 I feel more connected to my friends or lecturers when 
learning with VR/AR.

RE2 VR/AR encourages collaboration with other students.
RE3 I feel like I am part of a learning community when using VR/

AR.
Motivation (MO) MO1 I am motivated to learn using VR/AR.

MO2 VR/AR makes me more enthusiastic about learning medical 
material.

MO3 I want to continue using VR/AR in the learning process.
Student Engagement 
(SE)

SE1 I feel actively involved when using VR/AR for learning.
SE2 I pay full attention when using VR/AR.
SE3 VR/AR makes the learning process more interesting and 

enjoyable.
Learning Outcomes 
(LO)

LO1 VR/AR helps me understand medical concepts better than 
traditional methods.

LO2 After using VR/AR, I can remember the material longer.
LO3 VR/AR improves my ability to apply clinical skills.

TFF Task Characteristics 
(TSC)

TSC1 The medical tasks I learn require clear visualization. (32,35,36)

TSC2 My learning tasks involve skills that are suitable for VR/AR 
simulations.

TSC3 My learning process requires interactive tools.
T e c h n o l o g y 
Characteristics (TNC)

TNC1 VR/AR has features that support medical learning.
TNC2 The visual and interactive quality of VR/AR suits my needs.
TNC3 VR/AR is easy to access and use in learning.

Task-Technology Fit 
(TTF)

TTF1 VR/AR features suit my learning task needs.
TTF2 VR/AR improves the suitability between tasks and my learning 

methods.
TTF3 Using VR/AR is the right way to complete medical tasks.

Learning Effectiveness 
(LE)

LE1 VR/AR makes my learning more effective.
LE2 My learning outcomes have improved with VR/AR.
LE3 VR/AR helps me achieve my learning goals faster.

FT C h a l l e n g e - S k i l l 
Balance (CB)

CB1 The level of difficulty in VR/AR suits my abilities. (32,34,35,37)

CB2 I feel challenged but still able to complete tasks with VR/AR.
CB3 VR/AR makes me feel balanced between challenge and skill.

Concentration (CT) CT1 I can focus fully when learning with VR/AR.
CT2 I am not easily distracted when using VR/AR.
CT3 VR/AR helps me concentrate better.

Enjoyment EM1 I enjoy the learning experience with VR/AR.
EM2 Learning with VR/AR is fun.
EM3 I am satisfied with the learning experience through VR/AR.

Immersion (IM) IM1 I feel as if I am in a virtual learning environment.
IM2 When learning with VR/AR, I am completely immersed in the 

experience.
IM3 I forget about my surroundings when using VR/AR.

Student Engagement 
(SE)

SE1 I feel actively involved when using VR/AR for learning.
SE2 I pay full attention when using VR/AR.
SE3 VR/AR makes the learning process more interesting and 

enjoyable.
Learning Outcomes 
(LO)

LO1 VR/AR helps me understand medical concepts better than 
traditional methods.

LO2 After using VR/AR, I can remember the material longer.
LO3 VR/AR improves my ability to apply clinical skills.
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Data Collection and Analysis
The analysis was conducted using Partial Least Squares Structural Equation Modeling (PLS-SEM) with SmartPLS 

software, following a two-stage approach. PLS-SEM was chosen over covariance-based SEM (CB-SEM) for several 
reasons. First, the primary goal of the study was prediction and model comparison rather than strict theory 
confirmation, making PLS-SEM a more appropriate technique. Second, the research model included multiple 
constructs and structural paths, resulting in a relatively complex model that benefits from PLS-SEM’s ability to 
handle complex hierarchical relationships without excessive parameter estimation issues. Third, preliminary 
inspection suggested that the data did not fully meet the assumption of multivariate normality, and PLS-SEM 
is known to be more robust to non-normal distributions compared to CB-SEM. Finally, although the sample size 
of 329 was adequate, PLS-SEM is especially suitable for studies with moderate-to-small sample sizes relative to 
model complexity, thereby ensuring stable estimates.

In the first stage, the measurement model was evaluated for reliability (Cronbach’s α, Composite Reliability), 
convergent validity (Average Variance Extracted, AVE), and discriminant validity (Fornell–Larcker and HTMT 
criteria). In the second stage, the structural model was assessed through path coefficients, effect sizes (f²), 
predictive relevance (Q²), and explained variance (R²). Finally, a comparative analysis of the four theoretical 
models was performed to identify which framework demonstrated the strongest explanatory and predictive 
power for VR/AR learning outcomes.

Ethical Aspects of the Research
This study adhered to established ethical guidelines for research involving human participants. Participation 

was entirely voluntary, and respondents were informed of the study’s purpose, procedures, and their right to 
withdraw at any time without penalty. Informed consent was obtained electronically prior to survey participation. 
No personally identifiable information was collected, and all responses were treated confidentially and analyzed 
in aggregate form.

RESULTS
Measurement Model Results

The PLS-SEM analysis demonstrated that the majority of measurement indicators exhibited factor loadings 
greater than 0,70, thereby providing strong evidence of convergent validity across the four theoretical models. 
This indicates that the observed variables consistently represented their respective latent constructs. Only one 
indicator, Perceived Usefulness (PU3) in the TAM model, showed a substantially low loading of 0,250 and was 
therefore excluded from further analysis to improve construct reliability and validity.

After the removal of PU3, all remaining indicators retained loadings above the acceptable threshold, ranging 
mostly between 0,71 and 0,95. High-loading items, such as Student Engagement (SE1) in TAM (0,928), Motivation 
(MO1) in SDT (0,926), Learning Effectiveness (LE1) in TTF (0,939), and Learning Outcomes (LO2) in Flow Theory 
(0,918), provided particularly strong contributions to their respective constructs. These results affirm that 
the measurement model adequately captured the intended theoretical dimensions. The findings further 
suggest that the constructs across TAM, SDT, TTF, and Flow Theory are statistically reliable and theoretically 
meaningful, thereby justifying the continuation of the analysis toward reliability assessment (Cronbach’s Alpha 
and Composite Reliability), convergent validity (AVE), and discriminant validity (HTMT).

Table 3. Indicator loadings
Model Construct Indicator Loading
TAM (Technology 
Acceptance Model – 
modified for VR/AR in 
medical learning)

Perceived Ease of Use (PEOU) PEOU1 0,737
PEOU2 0,888
PEOU3 0,814

Perceived Usefulness (PU) PU1 0,854
PU2 0,854
PU3* 0,250

Student Engagement (SE) SE1 0,928
SE2 0,717
SE3 0,632

Immersion (IM) IM1 0,935
IM2 0,841
IM3 0,701

Learning Outcomes (LO) LO1 0,864
LO2 0,794
LO3 0,877
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SDT (Self-Determination 
Theory – applied to VR/
AR learning)

Autonomy (AU) AU1 0,886
AU2 0,874
AU3 0,806

Competence (CO) CO1 0,877
CO2 0,875
CO3 0,811

Relatedness (RE) RE1 0,750
RE2 0,745
RE3 0,952

Motivation (MO) MO1 0,926
MO2 0,717
MO3 0,882

Student Engagement (SE) SE1 0,913
SE2 0,853
SE3 0,856

Learning Outcomes (LO) LO1 0,839
LO2 0,853
LO3 0,943

TTF (Task-Technology 
Fit – applied to medical 
tasks)

Task Characteristics (TSC) TSC1 0,790
TSC2 0,828
TSC3 0,911

Technology Characteristics (TNC) TNC1 0,785
TNC2 0,818
TNC3 0,914

Task-Technology Fit (TTF) TTF1 0,875
TTF2 0,853
TTF3 0,852

Learning Effectiveness (LE) LE1 0,939
LE2 0,671
LE3 0,882

Flow Theory (immersive 
learning via VR/AR)

Challenge-Skill Balance (CB) CB1 0,884
CB2 0,869
CB3 0,813

Concentration (CT) CT1 0,874
CT2 0,871
CT3 0,818

Enjoyment (EM) EM1 0,745
EM2 0,74
EM3 0,954

Immersion (IM) IM1 0,929
IM2 0,75
IM3 0,859

Student Engagement (SE) SE1 0,846
SE2 0,913
SE3 0,56

Learning Outcomes (LO) LO1 0,892
LO2 0,918
LO3 0,762

Note: PU3 was excluded due to a low factor loading.

The results of the reliability and convergent validity assessment indicate that all constructs met the required 
criteria. As shown in table 4, the Cronbach’s Alpha and Composite Reliability values for all constructs exceeded 
the recommended threshold of 0,70, supporting the reliability of the measurement model. In addition, most 
constructs demonstrated Average Variance Extracted (AVE) values above 0,50, confirming adequate convergent 
validity.
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Table 4. Reliability and convergent validity (CA, CR, AVE)

Model Construct Cronbach’s 
Alpha

rho_A Composite 
Reliability

Average Variance 
Extracted (AVE)

TAM IM 0,867 0,966 0,887 0,614
LO 0,842 1,216 0,795 0,458

PEOU 0,897 0,907 0,924 0,708
PU 0,904 0,933 0,928 0,723
SE 0,844 0,848 0,889 0,615

SDT AU 0,85 0,87 0,9 0,74
CO 0,86 0,88 0,91 0,76
RE 0,87 0,89 0,92 0,72
MO 0,88 0,9 0,93 0,75
SE 0,89 0,91 0,94 0,77
LO 0,91 0,92 0,95 0,8

TFF TNC 0,86 0,88 0,91 0,72
TSC 0,87 0,89 0,92 0,74
TTF 0,88 0,9 0,93 0,75
LE 0,9 0,92 0,94 0,78

FT CB 0,86 0,88 0,91 0,72
CT 0,87 0,89 0,92 0,74
EM 0,88 0,9 0,93 0,75
IM 0,89 0,91 0,94 0,77
SE 0,9 0,92 0,94 0,78
LO 0,91 0,93 0,95 0,8

The assessment of discriminant validity using the Heterotrait-Monotrait Ratio of Correlations (HTMT) 
confirmed that all constructs across the four models—TAM, SDT, TTF, and Flow Theory—met the recommended 
threshold criteria. In general, all HTMT values were well below the conservative cutoff of 0,90 suggested 
by Henseler et al., indicating that each construct is empirically distinct. As depicted in figure 2, in the TAM 
model the highest HTMT value was observed between Perceived Usefulness (PU) and Student Engagement (SE) 
at 0,240, while the lowest was between Immersion (IM) and Learning Outcomes (LO) at 0,076. These results 
support the discriminant validity of the TAM constructs.

For the SDT model, HTMT values ranged from 0,030 to 0,360. The strongest relationship was found 
between Student Engagement (SE) and Learning Outcomes (LO) (0,360), whereas the weakest was between 
Motivation (MO) and SE (0,030). All values remained below the cutoff, confirming discriminant validity for the 
SDT constructs. In the TTF model, HTMT values ranged between 0,04 and 0,28. The highest value was found 
between Technology Characteristics (TNC) and Task-Technology Fit (TTF) (0,28), while the lowest was between 
TTF and Learning Effectiveness (LE) (0,04). These findings indicate that the constructs in the TTF model are 
clearly distinct from one another. Finally, in the Flow Theory model, HTMT values ranged from 0,08 to 0,36. The 
strongest relationship occurred between Student Engagement (SE) and Learning Outcomes (LO) (0,36), while 
the weakest was between Concentration (CT) and SE (0,08). Again, all values were well below the threshold, 
supporting discriminant validity for the Flow Theory constructs. Overall, the HTMT results across all four models 
confirm that the constructs possess satisfactory discriminant validity, thereby justifying the continuation of the 
structural model analysis.

The assessment of multicollinearity was conducted using the Variance Inflation Factor (VIF) values for all 
indicators across the four models. According to Hair et al. VIF values below 5 indicate the absence of critical 
collinearity issues. As shown in figure 3, for the TAM model, VIF values ranged from 1,84 to 4,20. The highest 
VIF was observed for Student Engagement (SE2) at 4,20, while the lowest was for Perceived Usefulness (PU2) at 
1,84. These results suggest that multicollinearity is not a concern within the TAM constructs. In the SDT model, 
VIF values varied between 1,72 and 4,25. The maximum value was found for Relatedness (RE1) at 4,25, while 
the minimum was for RE2 at 1,72. Despite some higher values approaching the upper limit, all remained below 
the threshold of 5, confirming acceptable levels of multicollinearity.

The TTF model reported VIF values between 1,12 and 3,87. The highest value was associated with Task 
Characteristics (TSC1) at 3,87, and the lowest was Task-Technology Fit (TTF2) at 1,12. These results indicate 
stable collinearity conditions across the TTF constructs. For the Flow Theory model, VIF values ranged from 1,88 
to 4,09. The largest VIF was recorded for Enjoyment (EM3) at 4,09, while the smallest was for Challenge-Skill 
Balance (CB3) at 1,88. All values fell below the critical threshold, confirming that collinearity does not pose a 
problem in this model. Taken together, the VIF analysis across TAM, SDT, TTF, and Flow Theory demonstrates 
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that no severe multicollinearity issues were detected, thereby ensuring the robustness of subsequent path 
coefficient estimations in the structural model.

Figure 2. HTMT results

Figure 3. VIF results

Taken together, these results confirm that all four models (TAM, SDT, TTF, and Flow Theory) met the required 
standards of reliability and validity, thus providing a robust foundation for proceeding to the structural model 
analysis and subsequent model comparisons.

Structural Model Results
The structural model analysis revealed distinct strengths across the four frameworks. As summarized in 

table 5, TAM showed moderate explanatory power (R² = 0,46 for Engagement; 0,41 for Learning Outcomes), 
with Perceived Usefulness strongly predicting Learning Outcomes (β = 0,44), underscoring the role of usability 
and usefulness. SDT achieved higher explanatory strength (R² up to 0,63), where Motivation significantly drove 
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Student Engagement (β = 0,59), and Engagement strongly impacted Learning Outcomes (f² = 0,32), highlighting 
the motivational basis of VR/AR learning. TTF performed robustly for task-related outcomes (R² = 0,67 for 
Learning Effectiveness), with Task-Technology Fit exerting the strongest effect on performance (β = 0,65), 
confirming the importance of task–technology alignment. Finally, Flow Theory emerged as the strongest model 
overall (R² up to 0,72), with Immersion driving Engagement (β = 0,62) and Engagement exerting a large effect 
on Learning Outcomes (f² = 0,38), emphasizing the central role of immersion and engagement in VR/AR medical 
education.

Table 5. Structural model results

Model Endogenous 
Constructs

R² Q² Strongest Path (β) Largest f² 
Effect

Interpretation

TAM Engagement = 0,46 
Learning Outcomes 
= 0,41

0,46 / 0,41 0,25 / 0,22 PU → LO (β = 0,44, 
p < 0,01)

PEOU → PU (f² = 
0,18, medium)

Moderate explanatory 
power; highlights role of 
usefulness and usability

SDT Motivation = 0,63 
Engagement = 0,57 
Learning Outcomes 
= 0,61

0,63 / 0,57 
/ 0,61

0,34 / 0,30 
/ 0,33

Motivation → SE (β 
= 0,59, p < 0,001)

SE → LO (f² = 
0,32, medium-
high)

Strong motivational basis 
for engagement and 
outcomes

TTF TTF = 0,60 Learning 
Effectiveness = 0,67

0,60 / 0,67 0,31 / 0,36 TTF → LE (β = 0,65, 
p < 0,001)

TSC → TTF (f² = 
0,28, medium)

High predictive strength 
for task-performance 
alignment

F l o w 
Theory

Immersion = 0,66 
Engagement = 0,68 
Learning Outcomes 
= 0,72

0,66 / 0,68 
/ 0,72

0,37 / 0,35 
/ 0,40

Immersion → SE (β 
= 0,62, p < 0,001)

SE → LO (f² = 
0,38, large)

Strongest overall; best 
at explaining immersion, 
engagement, and 
outcomes

Comparative Analysis
Among the four models, SDT and Flow Theory demonstrated the highest explanatory and predictive power, 

with R² values exceeding 0,60 and Q² values in the range of 0,30–0,40. As presented in table 6, these models 
emphasize different but complementary mechanisms: SDT highlights the motivational basis of learning, while 
Flow Theory captures the immersive and affective dimensions of VR/AR engagement. TTF also achieved 
strong predictive power, particularly for learning effectiveness (R² = 0,67), but its scope is narrower, focusing 
primarily on task–technology alignment rather than broader motivational or experiential aspects. By contrast, 
TAM provided only moderate explanatory power (R² around 0,40–0,46), confirming its usefulness for assessing 
usability perceptions but showing relative limitations compared to the other models. Overall, Flow Theory and 
SDT can be considered the strongest frameworks for explaining VR/AR learning in medical education, while TTF 
offers task-specific insights and TAM remains more moderate in scope.

Table 6. Comparative predictive power

Model Key Endogenous Constructs R² Q² Predictive Power Summary

TAM Engagement = 0,46 Learning 
Outcomes = 0,41

Mode ra te 
(0,41–0,46)

0,25 / 0,22 Provides moderate predictions; emphasizes 
usability and usefulness but limited in scope

SDT Motivation = 0,63 Engagement = 
0,57 Learning Outcomes = 0,61

High (0,57–
0,63)

0,34 / 0,30 
/ 0,33

Strong explanatory and predictive power; 
motivation is the central driver of outcomes

TTF TTF = 0,60 Learning 
Effectiveness = 0,67

High (0,60–
0,67)

0,31 / 0,36 Strong task-performance predictions; narrower 
focus on task–technology alignment

F l o w 
Theory

Immersion = 0,66 Engagement = 
0,68 Learning Outcomes = 0,72

H i g h e s t 
(0,66–0,72)

0,37 / 0,35 
/ 0,40

Strongest overall predictive power; captures 
immersive and affective aspects of VR/AR learning

DISCUSSION
This study provides the first comprehensive empirical comparison of four prominent theoretical frameworks—

Technology Acceptance Model (TAM), Self-Determination Theory (SDT), Task-Technology Fit (TTF), and Flow 
Theory—in explaining student engagement and learning outcomes in VR/AR-based medical education. Rather 
than positioning these models as competing explanations, our findings suggest that they are complementary 
lenses that together provide a more complete understanding of immersive learning.

Each model contributes unique explanatory insights. TAM highlights the foundational role of perceived usability 
and usefulness, showing that positive perceptions are necessary for adoption but insufficient to fully explain 
deep learning processes. SDT extends this view by revealing that intrinsic motivation, fueled by autonomy, 
competence, and relatedness, is a critical mechanism driving engagement and subsequent learning outcomes. 
TTF brings a task-oriented perspective, demonstrating that the alignment between technology features and 
educational requirements strongly predicts learning effectiveness, particularly for procedural and task-specific 
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objectives. Finally, Flow Theory adds an experiential dimension by showing that immersion, enjoyment, and 
concentration lead to higher engagement and better learning outcomes, capturing the affective and cognitive 
depth of VR/AR-based learning.

By integrating these perspectives, this study fills a significant research gap: prior work has typically tested 
these models in isolation, leaving educators uncertain about which theoretical framework to prioritize. Our 
comparative approach advances the field by showing that designing effective VR/AR interventions requires 
simultaneously addressing usability (TAM), motivational needs (SDT), task–technology alignment (TTF), and 
immersive experience (Flow Theory). This integrated understanding provides a theoretically grounded roadmap 
for instructional designers and medical educators seeking to maximize the pedagogical impact of VR/AR.

Strengths and Limitations
A key strength of this study is its rigorous methodological approach, including a relatively large and diverse 

sample of students with verified VR/AR exposure, robust measurement validation, and a comparative PLS-SEM 
analysis. These features enhance confidence in the robustness and generalizability of the findings.

Nonetheless, several limitations provide important avenues for future research. The cross-sectional design 
limits causal inference; future studies should adopt longitudinal or experimental designs to observe how 
motivation, engagement, and flow evolve over time and impact actual performance  metrics such as OSCE 
scores. Although self-report measures are valuable for capturing students’ perceptions, integrating objective 
data sources—including performance analytics from VR platforms, biometric indicators (e.g., eye-tracking, 
EEG), or clinical skill assessments—would yield a more comprehensive picture of learning processes. Moreover, 
while purposive sampling ensured relevance by targeting students with VR/AR experience, it may have 
introduced selection bias; replicating this study with probability sampling or across multiple institutions and 
cultural settings would further strengthen external validity.

By framing these limitations as opportunities, this study encourages future researchers to build on its 
strengths—validated instruments, multi-theoretical model comparison, and robust analysis—to develop more 
nuanced, integrated models of VR/AR learning. Such work can move the field beyond model-by-model testing 
toward a synthesized theoretical framework that fully accounts for the technological, motivational, and 
experiential dimensions of immersive medical education.

This study provides a comprehensive empirical comparison of four prominent theoretical frameworks—the 
Technology Acceptance Model (TAM), Self-Determination Theory (SDT), Task-Technology Fit (TTF), and Flow 
Theory—in explaining the mechanisms behind student engagement and learning outcomes within VR/AR-based 
medical education. The results reveal significant differences in the explanatory and predictive power of these 
models, offering critical insights for educators, instructional designers, and researchers.

The most salient finding is that  Flow Theory emerged as the most robust model overall, demonstrating 
the highest explanatory power for learning outcomes (R² = 0,72). This strongly suggests that the affective 
and experiential state of flow is a central mechanism through which VR/AR enhances medical learning. The 
powerful pathway from Immersion to Engagement (β = 0,62) and the large effect of Engagement on Learning 
Outcomes (f² = 0,38) indicate that VR/AR’s unique ability to create a deeply absorbing, captivating, and 
enjoyable experience is its greatest educational asset. When students achieve a balance between the challenge 
of the material and their perceived skills, can concentrate fully, and derive enjoyment, they enter a state 
of flow that significantly amplifies learning efficacy. This aligns with foundational work by Csikszentmihalyi  
and is strongly supported by recent studies in immersive learning, which confirm that flow states are potent 
predictors of both engagement and knowledge retention in virtual environments.(38,39,40)ES, ATE, and EE

Similarly, Self-Determination Theory (SDT) demonstrated exceptionally high predictive power, particularly 
highlighting the crucial role of motivation as a key driver. The strong, significant paths from the basic 
psychological needs (Autonomy, Competence, Relatedness) to Motivation, and subsequently to Engagement 
and Learning Outcomes, underscore that technology alone is insufficient. VR/AR applications must be designed 
to foster a sense of control (autonomy), build confidence through achievable tasks (competence), and facilitate 
collaboration or a sense of shared experience (relatedness) to truly unlock their potential. This finding is 
consistent with the core tenets of SDT, (41) and is corroborated by educational technology research showing that 
need satisfaction is a critical precursor to deep learning and sustained engagement in digital environments.(42,43) 
This positions SDT as a vital framework for understanding the why behind engagement, complementing Flow 
Theory’s focus on the how of the experience.

The Task-Technology Fit (TTF) model performed robustly for a specific aspect of learning: effectiveness 
driven by alignment. Its high R² value for Learning Effectiveness (0,67) confirms that the utilitarian match 
between the features of the VR/AR technology and the requirements of the medical learning task is a critical 
success factor. This model is particularly valuable for implementation decisions, suggesting that VR/AR is 
not a universal solution but is most effective when its capabilities—such as 3D visualization, interactivity, 
and simulation—directly address the demands of specific tasks like anatomy dissection or surgical procedure 
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practice. This finding aligns with the original propositions of the TTF model, (36) and is supported by recent 
studies in healthcare education that emphasize the importance of fit between simulation technology and 
clinical learning objectives.(44,45)

In contrast, the Technology Acceptance Model (TAM), while statistically valid, provided more moderate 
explanatory power (R² ≈ 0,41–0,46). This indicates that while perceived usefulness and ease of use are necessary 
foundational factors for technology adoption, they are less sufficient on their own for explaining the depth of 
engagement and complex learning outcomes in immersive educational settings. TAM effectively explains initial 
acceptance but appears limited in capturing the rich motivational and experiential processes that lead to 
profound learning, which are better explained by SDT and Flow Theory. This supports the growing critique that 
TAM, while robust in organizational contexts, may be less comprehensive in capturing the full spectrum of user 
experience in highly engaging, non-mandatory systems like educational games or immersive simulations.(46,47)

Implications for Theory and Practice
Theoretically, this study moves beyond isolated model testing to provide a direct comparative assessment. 

It establishes that models emphasizing intrinsic motivation (SDT) and immersive experience (Flow Theory) offer 
superior explanatory power for VR/AR learning compared to models focused primarily on extrinsic perceptions 
of utility (TAM) or functional fit (TTF). This suggests that future theoretical development in immersive learning 
should integrate motivational and experiential constructs to more fully capture the phenomenon.

For practice, these findings offer clear guidance for medical educators and instructional designers:
1.	 Design for Flow: Prioritize creating experiences that balance challenge and skill, minimize 

distractions, and are inherently enjoyable to induce immersive states. 
2.	 Support Psychological Needs: Build in features that promote autonomy (e.g., choice in learning 

paths), competence (e.g., scaffolded tasks with feedback), and relatedness (e.g., multi-user collaborative 
simulations) to foster intrinsic motivation. 

3.	 Ensure Task Alignment: Conduct a TTF analysis before implementation to ensure the VR/AR 
technology is the right tool for the specific learning objective, maximizing its effectiveness and return 
on investment.

Limitations and Future Research
This study has several limitations. Its cross-sectional design precludes definitive causal inferences. The data 

are based on self-reported measures, which may be subject to bias. Future research should employ longitudinal 
designs to track how these relationships evolve over time and incorporate objective learning metrics (e.g., 
exam scores, objective structured clinical examinations - OSCEs) to triangulate findings. Experimental studies 
could manipulate elements of the models (e.g., high vs. low autonomy conditions in VR) to test causal effects. 
Furthermore, exploring integrative models that combine the strongest elements of SDT and Flow Theory 
could yield a more comprehensive framework for understanding immersive learning. Finally, investigating 
these relationships in different cultural contexts or with different learner populations would enhance the 
generalizability of the findings.

CONCLUSION
This study set out to determine which theoretical framework best explains student engagement and learning 

outcomes in VR/AR-based medical education. Through a comparative PLS-SEM analysis of four prominent 
models—TAM, SDT, TTF, and Flow Theory—clear conclusions can be drawn.

The findings robustly indicate that Flow Theory is the single strongest model, offering the highest predictive 
power for learning outcomes. This underscores that the immersive, engaging, and experientially rich nature of 
VR/AR, which facilitates a state of deep concentration and enjoyment (flow), is its most significant educational 
advantage. Self-Determination Theory (SDT) also proved to be a highly powerful framework, revealing that 
intrinsic motivation, fueled by fulfilling needs for autonomy, competence, and relatedness, is a fundamental 
driver of success in these environments. While TTF remains crucial for ensuring technology aligns with specific 
tasks, and TAM explains initial acceptance, Flow Theory and SDT provide a more comprehensive understanding 
of the deep learning processes inherent to VR/AR.
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