Evaluation of a stem-based didactic model for the development of scientific competences in high school students: a quasi-experimental study

Authors

  • Mario Macea Anaya Universidad de Córdoba Author
  • Jhony Chimbo Jumbo Universidad Metropolitana De Educación, Ciencia y Tecnología Author
  • Rubén Baena Navarro Universidad de Córdoba Author

DOI:

https://doi.org/10.56294/mw202485

Keywords:

STEM Approach, Science Competencies, High School Education, Quasi-Experimental Study, Innovative Methodologies

Abstract

This quasi-experimental study evaluates the effectiveness of a didactic model specifically designed under the STEM approach to enhance the development of scientific competencies in the Unified General High School in Science in Ecuador. A pretest-posttest design with control and experimental groups was used to investigate how the implementation of this model affects the acquisition and improvement of competencies in the areas of Chemistry, Physics and Biology. The methodology incorporated the application of expert-validated questionnaires to measure these competencies before and after the STEM educational intervention. Preliminary results show a significant improvement in the experimental group, indicating that the integration of the STEM approach is highly promising for the specific teaching of natural sciences at the baccalaureate level. This work enriches the understanding of the impact of innovative educational methodologies on science education and underlines the relevance of didactic strategies that incorporate technology, engineering and mathematics in an integrated way for the development of scientific competencies at the baccalaureate level. The research stresses the importance of continuing the exploration of the STEM approach in varied educational contexts in order to validate and extend the initial findings

References

1. Alangari, T. S. (2022). Online STEM education during COVID-19 period: A systematic review of perceptions in higher education. Eurasia Journal of Mathematics, Science and Technology Education, 18(5), em2105. https://doi.org/10.29333/ejmste/11986

2. Anderson, J., & Li, Y. (2020). Integrated Approaches to STEM Education (J. Anderson & Y. Li (eds.)). Springer International Publishing. https://doi.org/10.1007/978-3-03052229-2

3. Banks, F., & Barlex, D. (2020). Teaching STEM in the Secondary School. Routledge. https://doi.org/10.4324/9780429317736

4. Bottia, M. C., Stearns, E., Mickelson, R. A., Moller, S., & Parler, A. D. (2015). The Relationships among High School STEM Learning Experiences and Students’ Intent to Declare and Declaration of a STEM Major in College. Teachers College Record: The Voice of Scholarship in Education, 117(3), 1–46. https://doi.org/10.1177/016146811511700308

5. Brown, J., & Campione, J. (2001). Designing for Science Implications From Everyday, Classroom, and Professional Settings (K. Crowley, C. D. Schunn, & T. Okada (eds.)). Psychology Press. https://doi.org/10.4324/9781410600318

6. Cheng, X. (2023). Flipped Learning Model: An Effective Approach to Primary School STEM Education. Science Insights Education Frontiers, 15(1), 2145–2146. https://doi.org/10.15354/sief.23.co044

7. Chiu, T. K. F., & Li, Y. (2023). How Can Emerging Technologies Impact STEM Education?

8. Journal for STEM Education Research, 6(3), 375–384. https://doi.org/10.1007/s41979-023-00113-w

9. Collado-Ruano, J., Madroñero-Morillo, M., & Álvarez-González, F. (2019). Training Transdisciplinary Educators: Intercultural Learning and Regenerative Practices in Ecuador. Studies in Philosophy and Education, 38(2), 177–194. https://doi.org/10.1007/s11217-019-09652-5

10. De Meester, J., Boeve-de Pauw, J., Buyse, M.-P., Ceuppens, S., De Cock, M., De Loof, H., Goovaerts, L., Hellinckx, L., Knipprath, H., Struyf, A., Thibaut, L., Van de Velde, D., Van Petegem, P., & Dehaene, W. (2020). Bridging the Gap between Secondary and Higher STEM Education – the Case of STEM@school. European Review, 16. 28(S1), S135–S157. https://doi.org/10.1017/S1062798720000964

11. Delgado Cedeño, J. J., Vera Vera, M. G., Cruz Mendoza, J. C., & Pico Mieles, J. G. (2018). El Currículo de la Educación Básica Ecuatoriana: Una Mirada Desde la Actualidad. Revista Cognosis. ISSN 2588-0578, 3(4), 47. https://doi.org/10.33936/cognosis.v3i4.1462

12. Dyer, R. G. (2018). STEM education and its impact on Instrumentation and Measurement [Guest Editorial]. IEEE Instrumentation & Measurement Magazine, 21(3), 3–3. https://doi.org/10.1109/MIM.2018.8360910

13. Freeman, B., Marginson, S., & Tytler, R. (2014). The Age of STEM Educational policy and practice across the world in Science, Technology, Engineering and Mathematics (B. Freeman, S. Marginson, & R. Tytler (eds.)). Routledge. https://doi.org/10.4324/9781315767512

14. Gottesman, A. J., & Hoskins, S. G. (2013). CREATE Cornerstone: Introduction to Scientific Thinking, a New Course for STEM-Interested Freshmen, Demystifies Scientific Thinking through Analysis of Scientific Literature. CBE—Life Sciences Education, 12(1), 59–72. https://doi.org/10.1187/cbe.12-11-0201

15. Gottlieb, M., Caretta Weyer, H., Chan, T. M., & Humphrey Murto, S. (2023). Educator’s blueprint: A primer on consensus methods in medical education research. AEM Education and Training, 7(4). https://doi.org/10.1002/aet2.10891

16. Gülen, S., Dönmez, İ., & İdin, Ş. (2022). STEM Education in Metaverse Environment: Challenges and Opportunities. Journal of STEAM Education, 5(2), 100–103. https://doi.org/10.55290/steam.1139543

17. Han, J., Kelley, T., & Knowles, J. G. (2023). Building a sustainable model of integrated stem education: investigating secondary school STEM classes after an integrated 30. STEM project. International Journal of Technology and Design Education, 33(4), 1499–1523. https://doi.org/10.1007/s10798-022-09777-8

18. Ilwandri. (2023). Development of Connected-Pjbl Model Book Validation Instruments. Indonesia Journal of Engineering and Education Technology (IJEET), 1(3), 30–32. https://doi.org/10.61991/ijeet.v1i3.5

19. Karaşah Çakici, Ş., Kol, Ö., & Yaman, S. (2021). The Effects of STEM Education on Students’ Academic Achievement In Science Courses: A Meta-Analysis. Kuramsal Eğitimbilim, 14(2), 264–290. https://doi.org/10.30831/akukeg.810989

20. Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11. https://doi.org/10.1186/s40594-016-0046-z

21. Mintii, M. M. (2023). STEM education and personnel training: systematic review. Journal of Physics: Conference Series, 2611(1), 012025. https://doi.org/10.1088/17426596/2611/1/012025

22. Montaño Reyes, P. del C. (2021). Education in 2020... and 2030 de Martin Dougiamas.

23. Revista Mexicana de Bachillerato a Distancia, 13(25). https://doi.org/10.22201/cuaieed.20074751e.2021.25.78860

24. National Academy of Sciences (NAS). (2014). STEM Integration in K-12 Education.

25. National Academies Press. https://doi.org/10.17226/18612

26. National Science Foundation. (2023). Elementary and Secondary STEM Education. https://ncses.nsf.gov/pubs/nsb202331

27. OCDE. (2006). Programme for International Student Assessment (PISA) 2006: Science competencies for tomorrow’s world. OCDE Publishing. https://www.oecd.org/pisa/

28. OCDE. (2013). Teaching and Learning International Survey (TALIS) 2013 results: An international perspective on teaching and learning. OCDE Publishing. https://www.oecd.org/education/school/talis-2013-results.htm

29. Ortiz-Revilla, J., Greca, I. M., & Arriassecq, I. (2022). A Theoretical Framework for Integrated STEM Education. Science & Education, 31(2), 383–404. https://doi.org/10.1007/s11191-021-00242-x

30. Qin, J. (2022). On the Reform of Education Methods that Adapt to STEM Development Demand. International Journal of Education and Humanities, 6(2), 141–143. https://doi.org/10.54097/ijeh.v6i2.3660

31. Study USA. (2022). Why Is STEM Important? The Impact of STEM Education on Society. https://www.studyusa.com/en/a/2157/why-is-stem-important-the-impact-of-stemeducation-on-society

32. Tiep, P. Q., & Huong, N. T. (2023). Designing STEM Topics for Educating Primary School Student According to the General Education Program (2018). VNU Journal of Science: Education Research. https://doi.org/10.25073/2588-1159/vnuer.4691

33. Uve, E. C., García, S. A., Bonilla, C. G. R., & Rodríguez, J. M. R. (2023). Investigación educativa en el contexto ecuatoriano: los avances de la sociedad 5.0. Dykinson. https://doi.org/10.2307/jj.8500791

34. Wang, L.-H., Chen, B., Hwang, G.-J., Guan, J.-Q., & Wang, Y.-Q. (2022). Effects of digital game-based STEM education on students’ learning achievement: a meta-analysis. International Journal of STEM Education, 9(1), 26. https://doi.org/10.1186/s40594-022-00344-0

35. Xu, W., & Ouyang, F. (2022). The application of AI technologies in STEM education: a systematic review from 2011 to 2021. International Journal of STEM Education, 9(1), https://doi.org/10.1186/s40594-022-00377-5

Downloads

Published

2024-02-12

How to Cite

1.
Macea Anaya M, Chimbo Jumbo J, Baena Navarro R. Evaluation of a stem-based didactic model for the development of scientific competences in high school students: a quasi-experimental study. Seminars in Medical Writing and Education [Internet]. 2024 Feb. 12 [cited 2025 Feb. 5];3:85. Available from: https://mw.ageditor.ar/index.php/mw/article/view/42