Myofibroblast Activity in Diabetic Wound Healing: Unravelling the Diabetes Connection and Therapeutic Interventions
DOI:
https://doi.org/10.56294/mw2024524Keywords:
Martix Metalloproteinases (MMPs), Extracellular Matrix (ECM), Tissue Inhibitors Metalloproteinases (TIMPs), Dipeptidyl Peptidase 4 (DPP4)Abstract
BDiabetic wound healing poses a significant clinical challenge due to the impaired regenerative capacity observed in individuals with diabetes. Diabetes causes a dysregulated wound healing process that is multidimensional and involves intricate interactions between cellular and molecular processes. This paper reviews discuss the activity of myofibroblasts in the context of diabetic wound healing. Myofibroblasts are specialized cells with contractile capabilities that are essential for developing scars and tissue healing. They are one of the main participants in this complex process. Wound healing is a multifaceted and ever-changing biological response involving several interrelated systems. Enzymes responsible for the control of the extracellular matrix (ECM) are tissue inhibitors of metalloproteinases (TIMPs) and matrix metalloproteinases (MMPs). The ECM is essential for wound healing, reconstruction of tissues, and other bodily processes. Diabetes and myofibroblast apoptosis have a complicated and multidimensional interaction. Diabetes is a chronic illness that needs to be managed continuously since it fails to go away on the own. This strategy has strained interest in a number of areas, including wound healing. Certain academics have looked at the possibility of repurposing medications for wound care applications, even if this could not be typical. Dipeptidyl peptidase 4, metformin, and propranolol are used in the reusing of medications for the purpose of promoting wound healing. This review provides information on the influence of diabetes on myofibroblast function and fibroblast differentiation, as well as potential treatment options associated with the affected pathways.
References
Martinez-Moreno JM, Fontecha-Barriuso M, Martin-Sanchez D, Guerrero-Mauvecin J, Goma-Garces E, Fernandez-Fernandez B, Carriazo S, Sanchez-Niño MD, Ramos AM, Ruiz-Ortega M, Ortiz A. Epigenetic modifiers as potential therapeutic targets in diabetic kidney disease. International journal of molecular sciences. 2020 Jun 9;21(11):4113. DOI: https://doi.org/10.3390/ijms21114113
Zullo A, Mancini FP, Schleip R, Wearing S, Klingler W. Fibrosis: Sirtuins at the checkpoints of myofibroblast differentiation and profibrotic activity. Wound Repair and Regeneration. 2021 Jul;29(4):650-66. https://doi.org/10.1111/wrr.12943
Dong J, Chen L, Zhang Y, Jayaswal N, Mezghani I, Zhang W, Veves A. Mast cells in diabetes and diabetic wound healing. Advances in therapy. 2020 Nov;37(11):4519-37.DOI: https://doi.org/10.6084/m9.figshare.12911561
Bai Q, Han K, Dong K, Zheng C, Zhang Y, Long Q, Lu T. Potential applications of nanomaterials and technology for diabetic wound healing. International journal of nanomedicine. 2020 Dec 3:9717-43. https://doi.org/10.2147/IJN.S276001
Lasocka I, Jastrzębska E, Szulc-Dąbrowska L, Skibniewski M, Pasternak I, Kalbacova MH, Skibniewska EM. The effects of graphene and mesenchymal stem cells in cutaneous wound healing and their putative action mechanism. International journal of nanomedicine. 2019 Apr 1:2281-99. https://doi.org/10.2147/IJN.S190928
Retamal I, Hernández R, Velarde V, Oyarzún A, Martínez C, Julieta González M, Martínez J, Smith PC. Diabetes alters the involvement of myofibroblasts during periodontal wound healing. Oral Diseases. 2020 Jul;26(5):1062-71. https://doi.org/10.1111/odi.13325
Monika P, Waiker PV, Chandraprabha MN, Rangarajan A, Murthy KN. Myofibroblast progeny in wound biology and wound healing studies. Wound Repair and Regeneration. 2021 Jul;29(4):531-47. https://doi.org/10.1111/wrr.12937
Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. International journal of molecular sciences. 2020 Mar 6;21(5):1835.DOI: https://doi.org/10.1016/j.actbio.2020.03.035
Wang A, Lv G, Cheng X, Ma X, Wang W, Gui J, Hu J, Lu M, Chu G, Chen JA, Zhang H. Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition). Burns & trauma. 2020;8:tkaa017. https://doi.org/10.1093/burnst/tkaa017
Wong SK, Rangiah T, Bakri NS, Ismail WN, Bojeng EE, Abd Rahiman MA, Soliman AM, Ghafar N, Das S, Teoh SL. The effects of virgin coconut oil on fibroblasts and myofibroblasts on diabetic wound healing. Medicine And Health. 2019 Jan 1;14:132-41. https://doi.org/10.17576/MH.2019.1402.12
Eitner A, Culvenor AG, Wirth W, Schaible HG, Eckstein F. Impact of diabetes mellitus on knee osteoarthritis pain and physical and mental status: data from the osteoarthritis initiative. Arthritis care & research. 2021 Apr;73(4):540-8.DOI: https://doi.org/10.1016/j.lfs.2019.04.048
Yan Y, Liu X, Zhuang Y, Zhai Y, Yang X, Yang Y, Wang S, Hong F, Chen J. Pien Tze Huang accelerated wound healing by inhibition of abnormal fibroblast apoptosis in Streptozotocin induced diabetic mice. Journal of Ethnopharmacology. 2020 Oct 28;261:113203. DOI: https://doi.org/10.1016/j.jep.2020.113203
Braunwald E. Diabetes, heart failure, and renal dysfunction: the vicious circles. Progress in cardiovascular diseases. 2019 Jul 1;62(4):298-302.DOI: https://doi.org/10.1016/j.pcad.2019.07.003
La Sala L, Pontiroli AE. Prevention of diabetes and cardiovascular disease in obesity. International journal of molecular sciences. 2020 Oct 31;21(21):8178.DOI: https://doi.org/10.3390/ijms21218178
Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nature Reviews Nephrology. 2019 Jun;15(6):327-45.DOI: https://doi.org/10.1038/s41581-019-0135-6
Wan R, Weissman JP, Grundman K, Lang L, Grybowski DJ, Galiano RD. Diabetic wound healing: The impact of diabetes on myofibroblast activity and its potential therapeutic treatments. Wound Repair and Regeneration. 2021 Jul;29(4):573-81.DOI: https://doi.org/10.1111/wrr.12954
Jiang R, Wu S, Fang C, Wang C, Yang Y, Liu C, Hu J, Huang Y. Amino acids levels in early pregnancy predict subsequent gestational diabetes. Journal of Diabetes. 2020 Jul;12(7):503-11.DOI: https://doi.org/10.1111/1753-0407.13018
Ghiulai R, Roşca OJ, Antal DS, Mioc M, Mioc A, Racoviceanu R, Macaşoi I, Olariu T, Dehelean C, Creţu OM, Voicu M. Tetracyclic and pentacyclic triterpenes with high therapeutic efficiency in wound healing approaches. Molecules. 2020 Nov 26;25(23):5557. https://doi.org/10.3390/molecules25235557
Apolzan JW, Venditti EM, Edelstein SL, Knowler WC, Dabelea D, Boyko EJ, Pi-Sunyer X, Kalyani RR, Franks PW, Srikanthan P, Gadde KM. Long-term weight loss with metformin or lifestyle intervention in the diabetes prevention program outcomes study. Annals of internal medicine. 2019 May 21;170(10):682-90.DOI: https://doi.org/10.7326/M18-1605
Guillon C, Ferraro S, Clément S, Bouschbacher M, Sigaudo-Roussel D, Bonod C. Glycation by glyoxal leads to profound changes in the behavior of dermal fibroblasts. BMJ open diabetes research & care. 2021 Apr 26;9(1). DOI: https://doi.org/10.1136%2Fbmjdrc-2020-002091
Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open biology. 2020 Sep 30;10(9):200223.DOI: https://doi.org/10.1098/rsob.200223
Ma Y, Chen Z, Tao Y, Zhu J, Yang H, Liang W, Ding G. Increased mitochondrial fission of glomerular podocytes in diabetic nephropathy. Endocrine Connections. 2019 Aug 1;8(8):1206-12. DOI: https://doi.org/10.1530/EC-19-0234
Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Frontiers in pharmacology. 2018 May 1;9:423. https://doi.org/10.3389/fphar.2018.00423
Kalan LR, Meisel JS, Loesche MA, Horwinski J, Soaita I, Chen X, Uberoi A, Gardner SE, Grice EA. Strain-and species-level variation in the microbiome of diabetic wounds is associated with clinical outcomes and therapeutic efficacy. Cell host & microbe. 2019 May 8;25(5):641-55.
Afonso AC, Oliveira D, Saavedra MJ, Borges A, Simões M. Biofilms in diabetic foot ulcers: impact, risk factors and control strategies. International journal of molecular sciences. 2021 Jul 31;22(15):8278. https://doi.org/10.3390/ijms22158278
Burr SD, Stewart Jr JA. Extracellular matrix components isolated from diabetic mice alter cardiac fibroblast function through the AGE/RAGE signaling cascade. Life Sciences. 2020 Jun 1;250:117569.DOI: https://doi.org/10.1016/j.lfs.2020.117569
Makrilakis K. The role of DPP-4 inhibitors in the treatment algorithm of type 2 diabetes mellitus: when to select, what to expect. International journal of environmental health research. 2019 Aug;16(15):2720.DOI: https://doi.org/10.3390/ijerph16152720
Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Advances in wound care. 2018 Jul 1;7(7):209-31. https://doi.org/10.1089/wound.2017.0761
Polerà N, Badolato M, Perri F, Carullo G, Aiello F. Quercetin and its natural sources in wound healing management. Current Medicinal Chemistry. 2019 Sep 1;26(31):5825-48. https://doi.org/10.2174/0929867325666180713150626
Wei P, Zhong C, Yang X, Shu F, Xiao S, Gong T, Luo P, Li L, Chen Z, Zheng Y, Xia Z. Exosomes derived from human amniotic epithelial cells accelerate diabetic wound healing via PI3K-AKT-mTOR-mediated promotion in angiogenesis and fibroblast function. Burns & Trauma. 2020;8:tkaa020. https://doi.org/10.1093/burnst/tkaa020
Wolak M, Staszewska T, Juszczak M, Gałdyszyńska M, Bojanowska E. Anti-inflammatory and pro-healing impacts of exendin-4 treatment in Zucker diabetic rats: effects on skin wound fibroblasts. European Journal of Pharmacology. 2019 Jan 5;842:262-9. https://doi.org/10.1016/j.ejphar.2018.10.053
Sugimoto K, Murakami H, Deguchi T, Arimura A, Daimon M, Suzuki S, Shimbo T, Yagihashi S. Cutaneous microangiopathy in patients with type 2 diabetes: Impaired vascular endothelial growth factor expression and its correlation with neuropathy, retinopathy and nephropathy. Journal of diabetes investigation. 2019 Sep;10(5):1318-31. DOI: https://doi.org/10.1111/jdi.13020
Maloney A, Rosenstock J, Fonseca V. A model‐based meta‐analysis of 24 antihyperglycemic drugs for type 2 diabetes: comparison of treatment effects at therapeutic doses. Clinical Pharmacology & Therapeutics. 2019 May;105(5):1213-23. https://doi.org/10.1002/cpt.1307
Ma Q, Li Y, Li P, Wang M, Wang J, Tang Z, Wang T, Luo L, Wang C, Zhao B. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomedicine & pharmacotherapy. 2019 Sep 1;117:109138. DOI: https://doi.org/10.1016/j.biopha.2019.109138
Spampinato SF, Caruso GI, De Pasquale R, Sortino MA, Merlo S. The treatment of impaired wound healing in diabetes: looking among old drugs. Pharmaceuticals. 2020 Apr 1;13(4):60. https://doi.org/10.3390/ph13040060
Long M, Cai L, Li W, Zhang L, Guo S, Zhang R, Zheng Y, Liu X, Wang M, Zhou X, Wang H. DPP-4 inhibitors improve diabetic wound healing via direct and indirect promotion of epithelial-mesenchymal transition and reduction of scarring. Diabetes. 2018 Mar 1;67(3):518-31. https://doi.org/10.2337/db17-0934
Drankowska J, Kos M, Kościuk A, Marzęda P, Boguszewska-Czubara A, Tylus M, Święch-Zubilewicz A. MMP targeting in the battle for vision: Recent developments and future prospects in the treatment of diabetic retinopathy. Life sciences. 2019 Jul 15;229:149-56. DOI: https://doi.org/10.1016/j.lfs.2019.05.038
Kant V, Jangir BL, Sharma M, Kumar V, Joshi VG. Topical application of quercetin improves wound repair and regeneration in diabetic rats. Immunopharmacology and immunotoxicology. 2021 Sep 3;43(5):536-53. https://doi.org/10.1080/08923973.2021.1950758
Ayele AA, Tegegn HG, Ayele TA, Ayalew MB. Medication regimen complexity and its impact on medication adherence and glycemic control among patients with type 2 diabetes mellitus in an Ethiopian general hospital. BMJ open diabetes research & care. 2019 Jun 28;7(1).DOI: https://doi.org/10.1136%2Fbmjdrc-2019-000685
Oguntibeju OO. Medicinal plants and their effects on diabetic wound healing. Veterinary world. 2019 May 11;12(5):653. DOI: https://doi.org/10.14202%2Fvetworld.2019.653-663
Published
Issue
Section
License
Copyright (c) 2024 Harsh Bhati, Manashree Mane, Vinima Gambhir, Jyoti Prakash Samal, Vundela Swathi, Jagmeet Sohal, Saksham Sood (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.