Myofibroblast Activity in Diabetic Wound Healing: Unravelling the Diabetes Connection and Therapeutic Interventions

Authors

DOI:

https://doi.org/10.56294/mw2024524

Keywords:

Martix Metalloproteinases (MMPs), Extracellular Matrix (ECM), Tissue Inhibitors Metalloproteinases (TIMPs), Dipeptidyl Peptidase 4 (DPP4)

Abstract

BDiabetic wound healing poses a significant clinical challenge due to the impaired regenerative capacity observed in individuals with diabetes. Diabetes causes a dysregulated wound healing process that is multidimensional and involves intricate interactions between cellular and molecular processes. This paper reviews discuss the activity of myofibroblasts in the context of diabetic wound healing. Myofibroblasts are specialized cells with contractile capabilities that are essential for developing scars and tissue healing. They are one of the main participants in this complex process. Wound healing is a multifaceted and ever-changing biological response involving several interrelated systems. Enzymes responsible for the control of the extracellular matrix (ECM) are tissue inhibitors of metalloproteinases (TIMPs) and matrix metalloproteinases (MMPs). The ECM is essential for wound healing, reconstruction of tissues, and other bodily processes. Diabetes and myofibroblast apoptosis have a complicated and multidimensional interaction. Diabetes is a chronic illness that needs to be managed continuously since it fails to go away on the own. This strategy has strained interest in a number of areas, including wound healing. Certain academics have looked at the possibility of repurposing medications for wound care applications, even if this could not be typical. Dipeptidyl peptidase 4, metformin, and propranolol are used in the reusing of medications for the purpose of promoting wound healing. This review provides information on the influence of diabetes on myofibroblast function and fibroblast differentiation, as well as potential treatment options associated with the affected pathways.

 

References

Martinez-Moreno JM, Fontecha-Barriuso M, Martin-Sanchez D, Guerrero-Mauvecin J, Goma-Garces E, Fernandez-Fernandez B, Carriazo S, Sanchez-Niño MD, Ramos AM, Ruiz-Ortega M, Ortiz A. Epigenetic modifiers as potential therapeutic targets in diabetic kidney disease. International journal of molecular sciences. 2020 Jun 9;21(11):4113. DOI: https://doi.org/10.3390/ijms21114113

Zullo A, Mancini FP, Schleip R, Wearing S, Klingler W. Fibrosis: Sirtuins at the checkpoints of myofibroblast differentiation and profibrotic activity. Wound Repair and Regeneration. 2021 Jul;29(4):650-66. https://doi.org/10.1111/wrr.12943

Dong J, Chen L, Zhang Y, Jayaswal N, Mezghani I, Zhang W, Veves A. Mast cells in diabetes and diabetic wound healing. Advances in therapy. 2020 Nov;37(11):4519-37.DOI: https://doi.org/10.6084/m9.figshare.12911561

Bai Q, Han K, Dong K, Zheng C, Zhang Y, Long Q, Lu T. Potential applications of nanomaterials and technology for diabetic wound healing. International journal of nanomedicine. 2020 Dec 3:9717-43. https://doi.org/10.2147/IJN.S276001

Lasocka I, Jastrzębska E, Szulc-Dąbrowska L, Skibniewski M, Pasternak I, Kalbacova MH, Skibniewska EM. The effects of graphene and mesenchymal stem cells in cutaneous wound healing and their putative action mechanism. International journal of nanomedicine. 2019 Apr 1:2281-99. https://doi.org/10.2147/IJN.S190928

Retamal I, Hernández R, Velarde V, Oyarzún A, Martínez C, Julieta González M, Martínez J, Smith PC. Diabetes alters the involvement of myofibroblasts during periodontal wound healing. Oral Diseases. 2020 Jul;26(5):1062-71. https://doi.org/10.1111/odi.13325

Monika P, Waiker PV, Chandraprabha MN, Rangarajan A, Murthy KN. Myofibroblast progeny in wound biology and wound healing studies. Wound Repair and Regeneration. 2021 Jul;29(4):531-47. https://doi.org/10.1111/wrr.12937

Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. International journal of molecular sciences. 2020 Mar 6;21(5):1835.DOI: https://doi.org/10.1016/j.actbio.2020.03.035

Wang A, Lv G, Cheng X, Ma X, Wang W, Gui J, Hu J, Lu M, Chu G, Chen JA, Zhang H. Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition). Burns & trauma. 2020;8:tkaa017. https://doi.org/10.1093/burnst/tkaa017

Wong SK, Rangiah T, Bakri NS, Ismail WN, Bojeng EE, Abd Rahiman MA, Soliman AM, Ghafar N, Das S, Teoh SL. The effects of virgin coconut oil on fibroblasts and myofibroblasts on diabetic wound healing. Medicine And Health. 2019 Jan 1;14:132-41. https://doi.org/10.17576/MH.2019.1402.12

Eitner A, Culvenor AG, Wirth W, Schaible HG, Eckstein F. Impact of diabetes mellitus on knee osteoarthritis pain and physical and mental status: data from the osteoarthritis initiative. Arthritis care & research. 2021 Apr;73(4):540-8.DOI: https://doi.org/10.1016/j.lfs.2019.04.048

Yan Y, Liu X, Zhuang Y, Zhai Y, Yang X, Yang Y, Wang S, Hong F, Chen J. Pien Tze Huang accelerated wound healing by inhibition of abnormal fibroblast apoptosis in Streptozotocin induced diabetic mice. Journal of Ethnopharmacology. 2020 Oct 28;261:113203. DOI: https://doi.org/10.1016/j.jep.2020.113203

Braunwald E. Diabetes, heart failure, and renal dysfunction: the vicious circles. Progress in cardiovascular diseases. 2019 Jul 1;62(4):298-302.DOI: https://doi.org/10.1016/j.pcad.2019.07.003

La Sala L, Pontiroli AE. Prevention of diabetes and cardiovascular disease in obesity. International journal of molecular sciences. 2020 Oct 31;21(21):8178.DOI: https://doi.org/10.3390/ijms21218178

Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nature Reviews Nephrology. 2019 Jun;15(6):327-45.DOI: https://doi.org/10.1038/s41581-019-0135-6

Wan R, Weissman JP, Grundman K, Lang L, Grybowski DJ, Galiano RD. Diabetic wound healing: The impact of diabetes on myofibroblast activity and its potential therapeutic treatments. Wound Repair and Regeneration. 2021 Jul;29(4):573-81.DOI: https://doi.org/10.1111/wrr.12954

Jiang R, Wu S, Fang C, Wang C, Yang Y, Liu C, Hu J, Huang Y. Amino acids levels in early pregnancy predict subsequent gestational diabetes. Journal of Diabetes. 2020 Jul;12(7):503-11.DOI: https://doi.org/10.1111/1753-0407.13018

Ghiulai R, Roşca OJ, Antal DS, Mioc M, Mioc A, Racoviceanu R, Macaşoi I, Olariu T, Dehelean C, Creţu OM, Voicu M. Tetracyclic and pentacyclic triterpenes with high therapeutic efficiency in wound healing approaches. Molecules. 2020 Nov 26;25(23):5557. https://doi.org/10.3390/molecules25235557

Apolzan JW, Venditti EM, Edelstein SL, Knowler WC, Dabelea D, Boyko EJ, Pi-Sunyer X, Kalyani RR, Franks PW, Srikanthan P, Gadde KM. Long-term weight loss with metformin or lifestyle intervention in the diabetes prevention program outcomes study. Annals of internal medicine. 2019 May 21;170(10):682-90.DOI: https://doi.org/10.7326/M18-1605

Guillon C, Ferraro S, Clément S, Bouschbacher M, Sigaudo-Roussel D, Bonod C. Glycation by glyoxal leads to profound changes in the behavior of dermal fibroblasts. BMJ open diabetes research & care. 2021 Apr 26;9(1). DOI: https://doi.org/10.1136%2Fbmjdrc-2020-002091

Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open biology. 2020 Sep 30;10(9):200223.DOI: https://doi.org/10.1098/rsob.200223

Ma Y, Chen Z, Tao Y, Zhu J, Yang H, Liang W, Ding G. Increased mitochondrial fission of glomerular podocytes in diabetic nephropathy. Endocrine Connections. 2019 Aug 1;8(8):1206-12. DOI: https://doi.org/10.1530/EC-19-0234

Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Frontiers in pharmacology. 2018 May 1;9:423. https://doi.org/10.3389/fphar.2018.00423

Kalan LR, Meisel JS, Loesche MA, Horwinski J, Soaita I, Chen X, Uberoi A, Gardner SE, Grice EA. Strain-and species-level variation in the microbiome of diabetic wounds is associated with clinical outcomes and therapeutic efficacy. Cell host & microbe. 2019 May 8;25(5):641-55.

Afonso AC, Oliveira D, Saavedra MJ, Borges A, Simões M. Biofilms in diabetic foot ulcers: impact, risk factors and control strategies. International journal of molecular sciences. 2021 Jul 31;22(15):8278. https://doi.org/10.3390/ijms22158278

Burr SD, Stewart Jr JA. Extracellular matrix components isolated from diabetic mice alter cardiac fibroblast function through the AGE/RAGE signaling cascade. Life Sciences. 2020 Jun 1;250:117569.DOI: https://doi.org/10.1016/j.lfs.2020.117569

Makrilakis K. The role of DPP-4 inhibitors in the treatment algorithm of type 2 diabetes mellitus: when to select, what to expect. International journal of environmental health research. 2019 Aug;16(15):2720.DOI: https://doi.org/10.3390/ijerph16152720

Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Advances in wound care. 2018 Jul 1;7(7):209-31. https://doi.org/10.1089/wound.2017.0761

Polerà N, Badolato M, Perri F, Carullo G, Aiello F. Quercetin and its natural sources in wound healing management. Current Medicinal Chemistry. 2019 Sep 1;26(31):5825-48. https://doi.org/10.2174/0929867325666180713150626

Wei P, Zhong C, Yang X, Shu F, Xiao S, Gong T, Luo P, Li L, Chen Z, Zheng Y, Xia Z. Exosomes derived from human amniotic epithelial cells accelerate diabetic wound healing via PI3K-AKT-mTOR-mediated promotion in angiogenesis and fibroblast function. Burns & Trauma. 2020;8:tkaa020. https://doi.org/10.1093/burnst/tkaa020

Wolak M, Staszewska T, Juszczak M, Gałdyszyńska M, Bojanowska E. Anti-inflammatory and pro-healing impacts of exendin-4 treatment in Zucker diabetic rats: effects on skin wound fibroblasts. European Journal of Pharmacology. 2019 Jan 5;842:262-9. https://doi.org/10.1016/j.ejphar.2018.10.053

Sugimoto K, Murakami H, Deguchi T, Arimura A, Daimon M, Suzuki S, Shimbo T, Yagihashi S. Cutaneous microangiopathy in patients with type 2 diabetes: Impaired vascular endothelial growth factor expression and its correlation with neuropathy, retinopathy and nephropathy. Journal of diabetes investigation. 2019 Sep;10(5):1318-31. DOI: https://doi.org/10.1111/jdi.13020

Maloney A, Rosenstock J, Fonseca V. A model‐based meta‐analysis of 24 antihyperglycemic drugs for type 2 diabetes: comparison of treatment effects at therapeutic doses. Clinical Pharmacology & Therapeutics. 2019 May;105(5):1213-23. https://doi.org/10.1002/cpt.1307

Ma Q, Li Y, Li P, Wang M, Wang J, Tang Z, Wang T, Luo L, Wang C, Zhao B. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomedicine & pharmacotherapy. 2019 Sep 1;117:109138. DOI: https://doi.org/10.1016/j.biopha.2019.109138

Spampinato SF, Caruso GI, De Pasquale R, Sortino MA, Merlo S. The treatment of impaired wound healing in diabetes: looking among old drugs. Pharmaceuticals. 2020 Apr 1;13(4):60. https://doi.org/10.3390/ph13040060

Long M, Cai L, Li W, Zhang L, Guo S, Zhang R, Zheng Y, Liu X, Wang M, Zhou X, Wang H. DPP-4 inhibitors improve diabetic wound healing via direct and indirect promotion of epithelial-mesenchymal transition and reduction of scarring. Diabetes. 2018 Mar 1;67(3):518-31. https://doi.org/10.2337/db17-0934

Drankowska J, Kos M, Kościuk A, Marzęda P, Boguszewska-Czubara A, Tylus M, Święch-Zubilewicz A. MMP targeting in the battle for vision: Recent developments and future prospects in the treatment of diabetic retinopathy. Life sciences. 2019 Jul 15;229:149-56. DOI: https://doi.org/10.1016/j.lfs.2019.05.038

Kant V, Jangir BL, Sharma M, Kumar V, Joshi VG. Topical application of quercetin improves wound repair and regeneration in diabetic rats. Immunopharmacology and immunotoxicology. 2021 Sep 3;43(5):536-53. https://doi.org/10.1080/08923973.2021.1950758

Ayele AA, Tegegn HG, Ayele TA, Ayalew MB. Medication regimen complexity and its impact on medication adherence and glycemic control among patients with type 2 diabetes mellitus in an Ethiopian general hospital. BMJ open diabetes research & care. 2019 Jun 28;7(1).DOI: https://doi.org/10.1136%2Fbmjdrc-2019-000685

Oguntibeju OO. Medicinal plants and their effects on diabetic wound healing. Veterinary world. 2019 May 11;12(5):653. DOI: https://doi.org/10.14202%2Fvetworld.2019.653-663

Downloads

Published

2024-12-31

How to Cite

1.
Bhati H, Mane M, Gambhir V, Samal JP, Swathi V, Sohal J, et al. Myofibroblast Activity in Diabetic Wound Healing: Unravelling the Diabetes Connection and Therapeutic Interventions. Seminars in Medical Writing and Education [Internet]. 2024 Dec. 31 [cited 2025 Apr. 26];3:524. Available from: https://mw.ageditor.ar/index.php/mw/article/view/524