Biosynthesis of Quantum Dots: Mechanisms and Applications in Biotechnology

Authors

DOI:

https://doi.org/10.56294/mw2024530

Keywords:

Quantum dots (QD), semiconductor particles, biological and nanoparticles (NPs)

Abstract

This article discusses the processes and applications of biosynthesized quantum dots (QD) in biotechnology. QD are nanoscale semiconductor particles with unique optical and electronic properties, making them attractive for various applications. The biosynthesis of QD involves the use of biological entities to produce nanoparticles (NPs), allowing for precise control of size and shape. QD is highly advantageous over organic fluorophores because of their distinct optical and chemical properties, and they can be utilized as fluorescent indicators for various biological applications. This article also discusses the advantages of biosynthesis over traditional chemical synthesis methods, including the use of less toxic materials and a lower environmental impact. In the future, the potential of QD is closely tied to the advancement of new generations of particles that possess precise and uniform dimensions, as well as unique optical properties.

References

Omran BA, Whitehead KA, Baek KH. One-pot bioinspired synthesis of fluorescent metal chalcogenide and carbon quantum dots: Applications and potential biotoxicity. Colloids and Surfaces B: Biointerfaces. 2021 Apr 1;200:111578. https://doi.org/10.1016/j.colsurfb.2021.111578

Tusher MM. Microbial synthesis of Cadmium selenide quantum dots (CdSe QDs), influencing factors and applications. Optical and Quantum Electronics. 2023 Apr;55(4):332. https://doi.org/10.1007/s11082-023-04632-z

Adegoke O, Montaseri H, Nsibande SA, Forbes PB. Organometallic synthesis, structural and optical properties of CdSe quantum dots passivated with ternary AgZnS alloyed shell. Journal of Luminescence. 2021 Jul 1;235:118049. https://doi.org/10.1016/j.jlumin.2021.118049

Falsafi SR, Rostamabadi H, Assadpour E, Jafari SM. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Advances in Colloid and Interface Science. 2020 Jun 1;280:102166. https://doi.org/10.1016/j.cis.2020.102166

Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale. 2022;14(7):2534-71. https://doi.org/10.1039/D1NR08144F

Grasso G, Zane D, Dragone R. Microbial nanotechnology: challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials. 2019 Dec 18;10(1):11. https://doi.org/10.3390/nano10010011

Liu J, Zheng D, Zhong L, Gong A, Wu S, Xie Z. Biosynthesis of biocompatibility Ag2Se quantum dots in Saccharomyces cerevisiae and its application. Biochemical and Biophysical Research Communications. 2021 Mar 12;544:60-4. https://doi.org/10.1016/j.bbrc.2021.01.071

Borovaya M, Horiunova I, Plokhovska S, Pushkarova N, Blume Y, Yemets A. Synthesis, properties and bioimaging applications of silver-based quantum dots. International Journal of Molecular Sciences. 2021 Nov 11;22(22):12202. https://doi.org/10.3390/ijms222212202

Shi K, Xu X, Li H, Xie H, Chen X, Zhan Y. Biosynthesized quantum dots as improved biocompatible tools for biomedical applications. Current Medicinal Chemistry. 2021 Jan 1;28(3):496-513. https://doi.org/10.2174/0929867327666200102122737

Zhang Y, Xiao JY, Zhu Y, Tian LJ, Wang WK, Zhu TT, Li WW, Yu HQ. Fluorescence sensor based on biosynthetic CdSe/CdS quantum dots and liposome carrier signal amplification for mercury detection. Analytical chemistry. 2020 Feb 5;92(5):3990-7.

Alavi M. Biosynthesis of Quantum Dots and Their Therapeutic Applications in the Diagnosis and Treatment of Cancer and SARS-CoV-2. https://doi.org/10.34172/apb.2023.065

Xu Y, Musumeci V, Aymonier C. Chemistry in supercritical fluids for the synthesis of metal nanomaterials. Reaction Chemistry & Engineering. 2019;4(12):2030-54. https://doi.org/10.1039/C9RE00290A

Yang W, Li X, Fei L, Liu W, Liu X, Xu H, Liu Y. A review on sustainable synthetic approaches toward photoluminescent quantum dots. Green Chemistry. 2022;24(2):675-700.

Dok, A.R., Legat, T., de Coene, Y., Van der Veen, M.A., Verbiest, T. and Van Cleuvenbergen, S., 2021. Nonlinear optical probes of nucleation and crystal growth: recent progress and future prospects. Journal of Materials Chemistry C, 9(35), pp.11553-11568. https://doi.org/10.1039/D1GC02964A

Menazea AA, Abdelghany AM, Osman WH, Hakeem NA, Abd El-Kader FH. Precipitation of silver nanoparticles in silicate glasses via Nd: YAG nanosecond laser and its characterization. Journal of Non-Crystalline Solids. 2019 Jun 1;513:49-54. https://doi.org/10.1016/j.jnoncrysol.2019.03.018

Li W, Kaminski Schierle GS, Lei B, Liu Y, Kaminski CF. Fluorescent nanoparticles for super-resolution imaging. Chemical Reviews. 2022 Jun 27;122(15):12495-543.

Budagosky JA, García-Cristóbal A. Multiscale Kinetic Monte Carlo Simulation of Self-Organized Growth of GaN/AlN Quantum Dots. Nanomaterials. 2022 Sep 2;12(17):3052. https://doi.org/10.3390/nano12173052

Lekha DC, Shanmugam R, Madhuri K, Dwarampudi LP, Bhaskaran M, Kongara D, Tesfaye JL, Nagaprasad N, Bhargavi VN, Krishnaraj R. Review on silver nanoparticle synthesis method, antibacterial activity, drug delivery vehicles, and toxicity pathways: recent advances and future aspects. Journal of Nanomaterials. 2021;2021(1):4401829. https://doi.org/10.1155/2021/4401829

Wang M, Zhang Y, Yao Q, Ng M, Lin M, Li X, Bhakoo KK, Chang AY, Rosei F, Vetrone F. Morphology control of lanthanide doped NaGdF4 nanocrystals via one-step thermolysis. Chemistry of Materials. 2019 Jun 3;31(14):5160-71.

Liang T, Qiu X, Ye X, Liu Y, Li Z, Tian B, Yan D. Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. 3 Biotech. 2020 Jan;10:1-6. https://doi.org/10.1007/s13205-019-1999-7

Theiss S, Voggel M, Schlötter M, Sutter S, Stöckl MT, Polarz S. Tolerance in superstructures formed from high-quality colloidal ZnO nanoparticles with hexagonal cross-section. CrystEngComm. 2019;21(34):5137-44. https://doi.org/10.1039/C9CE00811J

Park SY, Lee S, Yang J, Kang MS. Patterning quantum dots via photolithography: a review. Advanced Materials. 2023 Oct;35(41):2300546. https://doi.org/10.1002/adma.202300546

Efros AL, Brus LE. Nanocrystal quantum dots: from discovery to modern development. ACS nano. 2021 Apr 8;15(4):6192-210.

Shalabayev Z, Baláž M, Khan N, Nurlan Y, Augustyniak A, Daneu N, Tatykayev B, Dutková E, Burashev G, Casas-Luna M, Džunda R. Sustainable synthesis of cadmium sulfide, with applicability in photocatalysis, hydrogen production, and as an antibacterial agent, using two mechanochemical protocols. Nanomaterials. 2022 Apr 7;12(8):1250. https://doi.org/10.3390/nano12081250

Palimi MJ, Tang Y, Alvarez V, Kuru E, Li DY. Green corrosion inhibitors for drilling operation: New derivatives of fatty acid-based inhibitors in drilling fluids for 1018 carbon steel in CO2-saturated KCl environments. Materials Chemistry and Physics. 2022 Sep 1;288:126406. https://doi.org/10.1016/j.matchemphys.2022.126406

Alsaggaf, M.S., Elbaz, A.F., El-baday, S. and Moussa, S.H., 2020. Anticancer and antibacterial activity of cadmium sulfide nanoparticles by Aspergillus niger. Advances in Polymer Technology, 2020, pp.1-13.

Plastun IL, Zakharov AA, Naumov AA. Features of silver sulfide nanoparticles bacterial synthesis: Molecular modeling. In2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE) 2020 Sep 24 (pp. 318-322). IEEE. doi: 10.1109/APEDE48864.2020.9255570.

Amor-Gutiérrez O, Iglesias-Mayor A, Llano-Suárez P, Costa-Fernández JM, Soldado A, Podadera A, Parra F, Costa-García A, de la Escosura-Muñiz A. Electrochemical quantification of Ag 2 S quantum dots: Evaluation of different surface coating ligands for bacteria determination. Microchimica Acta. 2020 Mar;187:1-1. https://doi.org/10.1007/s00604-020-4140-z

Munyai S, Tetana ZN, Mathipa MM, Ntsendwana B, Hintsho-Mbita NC. Green synthesis of Cadmium Sulphide nanoparticles for the photodegradation of Malachite green dye, Sulfisoxazole and removal of bacteria. Optik. 2021 Dec 1;247:167851. https://doi.org/10.1016/j.ijleo.2021.167851

Yoon J, Oh SG. Synthesis of amine modified ZnO nanoparticles and their photocatalytic activities in micellar solutions under UV irradiation. Journal of Industrial and Engineering Chemistry. 2021 Apr 25;96:390-6. https://doi.org/10.1016/j.jiec.2021.01.043

Lin Q, Liang S, Wang J, Zhang R, Wang X. Cadmium sulfide 3D photonic crystal with hierarchically ordered macropores for highly efficient photocatalytic hydrogen generation. Inorganic Chemistry. 2022 Feb 1;61(6):2920-8.

Du T, Cai K, Han H, Fang L, Liang J, Xiao S. Probing the interactions of CdTe quantum dots with pseudorabies virus. Scientific Reports. 2015 Nov 10;5(1):16403.

Hu Z, Song B, Xu L, Zhong Y, Peng F, Ji X, Zhu F, Yang C, Zhou J, Su Y, Chen S. Aqueous synthesized quantum dots interfere with the NF-κB pathway and confer anti-tumor, anti-viral and anti-inflammatory effects. Biomaterials. 2016 Nov 1;108:187-96. https://doi.org/10.1016/j.biomaterials.2016.08.047

Nie X, Jiang C, Wu S, Chen W, Lv P, Wang Q, Liu J, Narh C, Cao X, Ghiladi RA, Wei Q. Carbon quantum dots: A bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. Journal of Photochemistry and Photobiology B: Biology. 2020 May 1;206:111864. https://doi.org/10.1016/j.jphotobiol.2020.111864

Kumari A, Sharma A, Sharma R, Malairaman U, Singh RR. Biocompatible and fluorescent water based NIR emitting CdTe quantum dot probes for biomedical applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021 Mar 5;248:119206. https://doi.org/10.1016/j.saa.2020.119206

Dassanayake RS, Wansapura PT, Tran P, Hamood A, Abidi N. Cotton cellulose-CdTe quantum dots composite films with inhibition of biofilm-forming S. aureus. Fibers. 2019 Jun 19;7(6):57. https://doi.org/10.3390/fib7060057

Priyadarshini E, Priyadarshini SS, Cousins BG, Pradhan N. Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere. 2021 Jul 1;274:129976. https://doi.org/10.1016/j.chemosphere.2021.129976

Chugh M, Kumar L, Bhardwaj D, Bharadvaja N. Bioaccumulation and detoxification of heavy metals: an insight into the mechanism. InDevelopment in wastewater treatment research and processes 2022 Jan 1 (pp. 243-264). Elsevier. https://doi.org/10.1016/B978-0-323-85657-7.00013-4

Liu Y, He G, He T, Saleem M. Signaling and detoxification strategies in plant-microbes symbiosis under heavy metal stress: a mechanistic understanding. Microorganisms. 2022 Dec 26;11(1):69. https://doi.org/10.3390/microorganisms11010069

Priyadarshini E, Priyadarshini SS, Pradhan N. Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Applied Microbiology and Biotechnology. 2019 Apr 2;103:3297-316. https://doi.org/10.1007/s00253-019-09685-3

Tarfeen N, Nisa KU, Hamid B, Bashir Z, Yatoo AM, Dar MA, Mohiddin FA, Amin Z, Ahmad RA, Sayyed RZ. Microbial remediation: a promising tool for reclamation of contaminated sites with special emphasis on heavy metal and pesticide pollution: a review. Processes. 2022 Jul 12;10(7):1358. https://doi.org/10.3390/pr10071358

Ding C, Huang Y, Shen Z, Chen X. Synthesis and bioapplications of Ag2S quantum dots with near‐infrared fluorescence. Advanced Materials. 2021 Aug;33(32):2007768. https://doi.org/10.1002/adma.202007768

Published

2024-12-31

How to Cite

1.
Sudan P, Wani TA, Varma P, Patil S, Sahoo A, Sudheer K, et al. Biosynthesis of Quantum Dots: Mechanisms and Applications in Biotechnology. Seminars in Medical Writing and Education [Internet]. 2024 Dec. 31 [cited 2025 Mar. 10];3:530. Available from: https://mw.ageditor.ar/index.php/mw/article/view/530