Data processing in internet of things networks
DOI:
https://doi.org/10.56294/mw2024.595Keywords:
Data Stream, Data Processing, Data Management, İnternet of Things, NetworkAbstract
As an important component of the IoT ecosystem, data sets are an essential part of the decision-making process. IoT devices generate hundreds of new data sets every second and the problem of managing them appropriately arises. In the process of data management, their processing is a particularly complex and important process. Various methods and tools are used to process data sets in the IoT ecosystem. Here, data processing allows you to speed up the decision-making process and make it less risky by transforming that data into the required form and making it relatively simple. The article explores the concept of data, data management and processing in the IoT ecosystem and shows a simple example of data processing.
References
1. Alex Khang, Vugar Abdullayev, Babasaheb Jadhav, Shashi Kant Gupta, Gilbert Morris. "AI- Centric Modeling and Analytics - Concepts, Technologies, and Applications", CRC Press, 2023
2. Alex Khang, Sita Rani, Arun Kumar Sivaraman. "AI-Centric Smart City Ecosystems - Technologies, Design, and Implementation", CRC Press, 2022
3. Alex Khang. "AI and IoT Technology and Applications for Smart Healthcare Systems", CRC Press, 2024
4. Muhammad Azhar Iqbal, Sajjad Hussain, Huanlai Xing, Muhammad Imran. "Enabling the Internet of Things", Wiley, 2021
5. Liubomyr Maievskyi, Solution Engineer, “IoT Architecture”, 20 Feb. 2023, URL: https://limestonedigital.com/iot-architecture/
6. Khang, Alex, et al. "The Key Assistant of Smart City: Sensors and Tools." AI-Centric Smart City Ecosystems. CRC Press, 2022. 271-280.
7. Miranda Junior, Hamilton & Bezerra, Nelson & Bezerra, Marlene & Farias Filho, José. (2017). The internet of things sensors technologies and their applications for complex engineering projects: a digital construction site framework. Brazilian Journal of Operations & Production Management. 14. 567. 10.14488/BJOPM.2017.v14.n4.a12.
8. Daniel Teachey, “Making sense of streaming data in the Internet of Things”, https://www.sas.com/en_us/insights/articles/big-data/making-sense-of-streaming-data-in-the-internet-of-things.html
9. Alaasam A.B.A. et al. Analytic Study of Containerizing Stateful Stream Processing as Microservice to Support Digital Twins in Fog Computing // Programming and Computer Software. 2020. Vol. 46, no. 8. P. 511–525. DOI:10.1134/S0361768820080083
10. “Real-Time Processing of Data for IoT Applications”, August 29, 2021, URL: https://www.3pillarglobal.com/insights/blog/real-time-processing-of-data-for-iot-applications/
11. Meehan J., Zdonik S. Data Ingestion for the Connected World // Cidr. 2017.
12. Triwiyanto T, Vugar Abdullayev, Sabir Mammadov, Shafi Danyalov, Latafat Mikailzade, Ibrahim Abbasov, Taleh Asgarov, Bahar Asgarova, Zarifa İmanova, Vusala Abuzarova, “Significance and Processing of Signals”, 1–12, 2024, https://itta.cyber.az/2024/papers/42.html
13. G. Mammadova et al. (Eds.): ITTA 2024, Part 3, pp. 1–12, 2024. https://doi.org/10.54381/itta2024.42
14. Margara A., Rabl T. Definition of Data Streams // Encyclopedia of Big Data Technologies. Cham: Springer International Publishing, 2019. P. 648– 652. DOI:10.1007/978-3-319-77525-8_188
15. Gavaldà R. Adaptive Windowing // Encyclopedia of Big Data Technologies. Cham: Springer International Publishing, 2018. P. 1–6.DOI:10.1007/978-3-319-63962-8_194-1
16. Golab L. Types of Stream Processing Algorithms // Encyclopedia of Big Data Technologies. Cham: Springer International Publishing, 2019. P. 1726–1732. DOI:10.1007/978-3-319-77525-8_193.
17. MapReduce Tutorial [Electronic resource].
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html (accessed: 17.10.2021).
18. Shahrivari S. Beyond batch processing: Towards real-time and streaming big data // Computers. 2014. Vol. 3, no. 4. P. 117–129. DOI:10.3390/computers3040117
19. Agneeswaran V.S. Big Data Analytics Beyond Hadoop: Real-Time Applications with Storm, Spark, and More Hadoop Alternatives. 2014.
20. Kambatla K. et al. Trends in big data analytics // Journal of Parallel and Distributed Computing. 2014. Vol. 74, no. 7. P. 2561–2573. DOI:10.1016/j.jpdc.2014.01.003.
21. Andrade H., Gedik B., Turaga D. Fundamentals of Stream Processing // Fundamentals of Stream Processing. Cambridge: Cambridge University Press, 2014. DOI:10.1017/CBO9781139058940.
22. Romero C., Oliveira H.P. Kafka: a Distributed Messaging System for Log Processing // Proceedings of 6th international workshop on networking meets databases (NetDB). Athens, Greece, 2011.
23. Ragimova, N.A., et al. "The Era Of Digital Health And Its Impact On Human Psychology." 1st INTERNATIONAL CONFERENCE ON THE 4th INDUSTRIAL REVOLUTION AND INFORMATION TECHNOLOGY. Vol. 1. No. 1. Azerbaijan State Oil and Industry University, 2023.
24. Isah H. et al. A Survey of Distributed Data Stream Processing Frameworks // IEEE Access. IEEE, 2019. Vol. 7, no. October. P. 154300–154316.
25. DOI:10.1109/ACCESS.2019.2946884.
26. Meehan J., Zdonik S. Data Ingestion for the Connected World // Cidr. 2017.
27. Gualtieri M., Yuhanna N. The forrester wave: Big data streaming analytics, Q1 2016 // Forrester research. Cambridge, MA, USA, 2016. 15 p
28. Henning S., Hasselbring W. Theodolite: Scalability Benchmarking of Distributed Stream Processing Engines in Microservice Architectures // Big Data Research. 2021. Vol. 25. DOI:10.1016/j.bdr.2021.100209.
29. Vugar Abdullayev Hajimahmud, Ragimova Nazila Ali, Triwiyanto, Asgarov Taleh Kamran, Mammadov Kanan Hafiz, Abuzarova Vusala Alyar / Application of Industrial Internet of Things Technologies in the Manufacturing Industry/ Book: Machine Vision and Industrial Robotics in Manufacturing, 1st Edition, CRC Press, 2024.
30. https://dm.ageditor.ar/index.php/dm
31. https://managment.ageditor.uy/index.php/managment
32. https://builtin.com/data-science/types-of-data-analysis
33. Gomes, M. M., Righi, R. da R., da Costa, C. A., & Griebler, D. (2022). STEAM++: An Extensible End-To-End Framework for Developing IoT Data Processing Applications in the Fog. arXiv. https://arxiv.org/abs/2205.03271
34. Khan, M. A., Khan, S. U., & Madani, S. A. (2023). Machine Learning Techniques and Big Data Analysis for Internet of Things Applications: A Review Study. ResearchGate. https://www.researchgate.net/publication/362224734
35. Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2017). Deep Learning for IoT Big Data and Streaming Analytics: A Survey. arXiv. https://arxiv.org/abs/1712.04301
36. Sethi, S., Sarangi, S. A., & Panda, S. (2021). IoT Data Preprocessing: A Survey. Webology. https://www.webology.org/data-cms/articles/20220309031031pmwebology%2018%20%286%29%20-%20211%20pdf.pdf
37. Usama, M., Jan, M. A., Amanullah, M., & Khan, S. (2023). An Optimized IoT-enabled Big Data Analytics Architecture for Edge-Cloud Computing Using Machine Learning. PMC. https://pmc.ncbi.nlm.nih.gov/articles/PMC10691823.
Published
Issue
Section
License
Copyright (c) 2024 Taleh Askerov, Vugar Abdullayev, Vusala Abuzarova, Yitong Niu, Khushwant Singh (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.