Research Progress of Houttuynia cordata on Drug-Resistant Bacteria in Respiratory Tract Infections

Authors

DOI:

https://doi.org/10.56294/mw2025437

Keywords:

H. cordata, Drug-resistant bacteria, Respiratory tract infections, Lipopolysaccharide (LPS) shedding, Antibacterial mechanism

Abstract

Respiratory tract infections (RTIs) caused by drug-resistant bacteria represent a major threat to global health, causing increased morbidity, death, and healthcare costs. Houttuynia cordata, a traditionally utilized medicinal plant, has gained attention for its broad-spectrum antibacterial, anti-inflammatory, and immunomodulatory properties. This research examines the advances in the pharmacological research and clinical potential of H. cordata in combating drug-resistant pathogens responsible for RTIs. The research highlighted both the broad-spectrum antibacterial activity of H. cordata extracts and the specific therapeutic efficacy of its active compound, Sodium Houttuyfonate (SH). SH has proven to be effective against several infections, including Haemophilus influenzae, a major drug-resistant bacterium related to pneumonia. In experimental models, SH, an active compound of H. cordata, demonstrated significant therapeutic effects by markedly reducing bacterial burden and mitigating lung tissue inflammation. SH effectively modulated inflammatory and oxidative stress responses, promoting a shift toward immune regulation and tissue protection. This action, distinct from traditional antibiotics, initiated macrophage polarization via the TLR4/TRIF/IRF3 signaling pathway. Furthermore, SH exhibits a dose-dependent antibacterial effect and notable membrane-disrupting capability comparable to known antimicrobial agents. These findings collectively underscore H. cordata's clinical promise as a complementary or alternative therapy against multidrug-resistant respiratory pathogens.

References

1. Li, R., Li, J. and Zhou, X., 2024. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal transduction and targeted therapy, 9(1), p.19. https://doi.org/10.1038/s41392-023-01722-y

2. Atteih, S.E., Armbruster, C.R., Hilliam, Y., Rapsinski, G.J., Bhusal, J.K., Krainz, L.L., Gaston, J.R., DuPont, M., Zemke, A.C., Alcorn, J.F. and Moore, J.A., 2024. Effects of highly effective modulator therapy on the dynamics of the respiratory mucosal environment and inflammatory response in cystic fibrosis. Pediatric Pulmonology, 59(5), pp.1266-1273. https://doi.org/10.1002/ppul.26898

3. Chen, H., Sha, X., Luo, Y., Chen, J., Li, X., Wang, J., Cao, G. and Peng, X., 2021. Acute and subacute toxicity evaluation of Houttuynia cordata ethanol extract and plasma metabolic profiling analysis in both male and female rats. Journal of Applied Toxicology, 41(12), pp.2068-2082. https://doi.org/10.1002/jat.4198

4. Santella, B., Serretiello, E., De Filippis, A., Folliero, V., Iervolino, D., Dell’Annunziata, F., Manente, R., Valitutti, F., Santoro, E., Pagliano, P. and Galdiero, M., 2021. Lower respiratory tract pathogens and their antimicrobial susceptibility pattern: a 5-year study. Antibiotics, 10(7), p.851. https://doi.org/10.3390/antibiotics10070851

5. Liu, H., Zhang, Y., Yang, J., Liu, Y. and Chen, J., 2022. Application of mNGS in the etiological analysis of lower respiratory tract infections and the prediction of drug resistance. Microbiology spectrum, 10(1), pp.e02502-21. https://doi.org/10.1128/spectrum.02502-21

6. Durand-Reville, T.F., Miller, A.A., O’Donnell, J.P., Wu, X., Sylvester, M.A., Guler, S., Iyer, R., Shapiro, A.B., Carter, N.M., Velez-Vega, C. and Moussa, S.H., 2021. Rational design of a new antibiotic class for drug-resistant infections. Nature, 597(7878), pp.698-702. https://doi.org/10.1038/s41586-021-03899-0

7. Talat, A. and Khan, A.U., 2023. Artificial intelligence as a smart approach to develop antimicrobial drug molecules: A paradigm to combat drug-resistant infections. Drug discovery today, 28(4), p.103491. https://doi.org/10.1016/j.drudis.2023.103491

8. Rigauts, C., Aizawa, J., Taylor, S.L., Rogers, G.B., Govaerts, M., Cos, P., Ostyn, L., Sims, S., Vandeplassche, E., Sze, M. and Dondelinger, Y., 2022. Rothia mucilaginosa is an anti-inflammatory bacterium in the respiratory tract of patients with chronic lung disease. European Respiratory Journal, 59(5). https://doi.org/10.1183/13993003.01293-2021

9. Pramanik, A., Sinha, A., Chaubey, K.K. and Dayal, D., 2023. Pharmaceutical Importance of H. cordata Rhizome. Medicinal Roots and Tubers for Pharmaceutical and Commercial Applications, p.27. https://doi.org/10.1201/b22924-3

10. Mansour, M., Khoder, R.M., Xiang, L., Zhang, L.L., Taha, A., Yahya, A., Wu, T., Barakat, H., Khalifa, I. and Xiaoyun, X., 2025. Effect of ultrasonic degradation on the physicochemical property, structure characterization, and bioactivity of H. cordata polysaccharide. Ultrasonics Sonochemistry, 116, p.107331. https://doi.org/10.1016/j.ultsonch.2025.107331

11. Pradhan, S., Rituparna, S., Dehury, H., Dhall, M. and Singh, Y.D., 2023. Nutritional profile and pharmacological aspect of Houttuynia cordata Thunb. and their therapeutic applications. Pharmacological Research-Modern Chinese Medicine, 9, p.100311. https://doi.org/10.1016/j.prmcm.2023.100311

12. Inthi, P., Pandith, H., Kongtawelert, P. and Banjerdpongchai, R., 2023. Anti-cancer effect and active phytochemicals of Houttuynia cordata thunb. against human breast cancer cells. Asian Pacific Journal of Cancer Prevention: APJCP, 24(4), p.1265. https://doi.org/10.31557/APJCP.2023.24.4.1265

13. Moorthy, K., Chang, K.C., Huang, H.C., Wu, W.J. and Chiang, C.K., 2023. Evaluating Antioxidant Performance, Biosafety, and Antimicrobial Efficacy of Houttuynia cordata Extract and Microwave-Assisted Synthesis of Biogenic Silver Nano-Antibiotics. Antioxidants, 13(1), p.32. https://doi.org/10.3390/antiox13010032

14. Lyngdoh, C.J., Wahlang, J.B., Langstieh, A.J., Hadem, K.L.H., Bora, I., Lahon, J. and Sabhapandit, D., 2020. Antimicrobial Activity of Aristolochia tagala Cham. Centella asiatica Linn. Houttuynia cordata Thunb. on Multi-Drug Resistant Clinical Isolates. Int J Pharm Sci Rev Res, 64(2), pp.76-81. https://doi.org/10.47583/ijpsrr.2020.v64i02.013

15. Ho, T.Y., Lo, H.Y., Lu, G.L., Liao, P.Y. and Hsiang, C.Y., 2023. Analysis of target organs of Houttuynia cordata: A study on the anti-inflammatory effect of upper respiratory system. Journal of Ethnopharmacology, 315, p.116687. https://doi.org/10.1016/j.jep.2023.116687

16. Du, J., Tian, S., Liu, M., Li, J. and Long, Z., 2024. The comprehensive evaluation and mechanism of HOUTTUYNIA CORDATA (Thunb) injection as a complementary therapy for infantile pneumonia. Phytomedicine Plus, 4(4), p.100619. https://doi.org/10.1016/j.phyplu.2024.100619

17. Ju, I.G., Lee, S., Choi, J.G., Kim, N., Huh, E., Lee, J.K. and Oh, M.S., 2023. Aerial part of Houttuynia cordata reverses memory impairment by regulating amyloid beta accumulation and neuroinflammation in Alzheimer's disease model. Phytotherapy Research, 37(7), pp.2854-2863. https://doi.org/10.1002/ptr.7781.

Downloads

Published

2025-06-17

How to Cite

1.
Wen T, Nor Azman NS. Research Progress of Houttuynia cordata on Drug-Resistant Bacteria in Respiratory Tract Infections. Seminars in Medical Writing and Education [Internet]. 2025 Jun. 17 [cited 2025 Jul. 19];4:437. Available from: https://mw.ageditor.ar/index.php/mw/article/view/437