Angiogenic Effects of Selected Food Seasonings on Fertilized Duck Embryo via the CAM Assay

Authors

  • Christine Mae T. Pulot Graduate Student, Department of Science and Mathematics Education, College of Education, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines Author
  • Vanjoreeh A. Madale Department of Science and Mathematics Education, College of Education, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines Author https://orcid.org/0009-0002-0229-755X
  • Shylza C. Tipalan Graduate Student, Department of Science and Mathematics Education, College of Education, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines Author
  • Mylah V. Tabelin Department of Biological Science, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines Author https://orcid.org/0000-0002-6383-7049
  • Monera A. Salic-Hairulla Department of Science and Mathematics Education, College of Education, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines Author https://orcid.org/0009-0002-9535-2465

DOI:

https://doi.org/10.56294/mw2025442

Keywords:

Angiogenic Effects, CAM Assay, Fertilized Duck Embryo, Food Seasonings

Abstract

Introduction: Angiogenesis is a vital physiological process involved in growth, development, and wound healing, but it may be adversely influenced by environmental and dietary factors. Despite the widespread consumption of food seasonings, the potential effects of their bioactive components—such as monosodium glutamate (MSG)—on angiogenesis remain understudied. To address this gap, this study aimed to investigate the angiogenic effects of selected commercially available food seasonings using the chorioallantoic membrane (CAM) assay in fertilized duck embryos.
Methods: Twenty fertilized duck eggs were randomly assigned to four groups: control, Product X, Product Y, and Product Z. A 10% aqueous extract of each seasoning was applied to the CAM of eggs in the respective treatment groups. Blood vessel formation and embryo viability were assessed after incubation.
Results: A significant reduction in blood vessel development was observed in all treatment groups compared to the control (p = 0.00184). Product Z exhibited the strongest antiangiogenic effect (96.15% inhibition), followed by Product Y (81.65%) and Product X (65.14%). Correspondingly, embryo mortality rates increased in treatment groups, correlating with the degree of angiogenesis inhibition.
Conclusions: The findings suggested that certain food seasonings, particularly those containing monosodium glutamate (MSG) and other additives may impair embryonic vascular development and pose potential embryotoxic risks. The CAM assay proved to be a reliable and ethical in vivo model for evaluating the biological impact of dietary compounds. Further studies are recommended to explore dose-dependent responses and histomorphological changes associated with these seasonings.

References

Heer, E., Jalving, M., & Harris, A. (2020). HIFs, angiogenesis, and metabolism: Elusive enemies in breast cancer. Journal of Clinical Investigation, 130(10), 5074–5087. https://doi.org/10.1172/jci137552

Veith, A., Henderson, K., Spencer, A., Sligar, A., & Baker, A. (2019). Therapeutic strategies for enhancing angiogenesis in wound healing. Advanced Drug Delivery Reviews, 146, 97–125. https://doi.org/10.1016/j.addr.2018.09.010

Saman, H., Raza, S., Uddin, S., & Rasul, K. (2020). Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches. Cancers, 12(5), 1172. https://doi.org/10.3390/cancers12051172

Zhang, R., Yao, Y., Gao, H., & Hu, X. (2024). Mechanisms of angiogenesis in tumour. Frontiers in Oncology, 14. https://doi.org/10.3389/fonc.2024.1359069

Lu, E., Yang, X., Wang, T., Huang, X., Chen, Y., Wang, R., … & Sha, X. (2023). Biomimetic thermo-sensitive hydrogel encapsulating hemangiomas stem cell derived extracellular vesicles promotes microcirculation reconstruction in diabetic wounds. Advanced Functional Materials, 33(45). https://doi.org/10.1002/adfm.202304250

Kretschmer, M., Rüdiger, D., & Zahler, S. (2021). Mechanical aspects of angiogenesis. Cancers, 13(19), 4987. https://doi.org/10.3390/cancers13194987

Korablev, A., Sesorova, I., Sesorov, V., Vavilov, P., Mironov, A., Zaitseva, A., … & Mironov, A. (2024). New interpretations for sprouting, intussusception, ansiform, and coalescent types of angiogenesis. International Journal of Molecular Sciences, 25(16), 8575. https://doi.org/10.3390/ijms25168575

Eelen, G., Treps, L., Li, X., & Carmeliet, P. (2020). Basic and therapeutic aspects of angiogenesis updated. Circulation Research, 127(2), 310–329. https://doi.org/10.1161/circresaha.120.316851

Chen, Q., Xu, Q., Zhu, H., Wang, J., Sun, N., Bian, H., … & Lin, C. (2023). Salvianolic acid B promotes angiogenesis and inhibits cardiomyocyte apoptosis by regulating autophagy in myocardial ischemia. Chinese Medicine, 18(1). https://doi.org/10.1186/s13020-023-00859-w

Chen, L., Wang, S., Feng, Y., Zhang, J., Du, Y., Zhang, J., … & Li, Y. (2021). Utilisation of chick embryo chorioallantoic membrane as a model platform for imaging-navigated biomedical research. Cells, 10(2), 463. https://doi.org/10.3390/cells10020463

Chu, P., Koh, A., Antony, J., & Huang, R. (2021). Applications of the chick chorioallantoic membrane as an alternative model for cancer studies. Cells Tissues Organs, 211(2), 222–237. https://doi.org/10.1159/000513039

Saeed, S., Hassan, A., Suliman, A., Moustafa, A., & Alali, F. (2025). Methanolic leaves extract of Ziziphus spina-christi inhibits cell proliferation and migration of HER2-positive breast cancer via p38 MAPK signaling pathway. International Journal of Molecular Sciences, 26(2), 654. https://doi.org/10.3390/ijms26020654

Azevedo, F., Lopes, D., Zóia, M., Correia, L., Saito, N., Fonseca, B., … & Rodrigues, V. (2022). A new approach to inhibiting triple-negative breast cancer: In vitro, ex vivo and in vivo antiangiogenic effect of BthTx-II, a PLA2-asp-49 from Bothrops jararacussu venom. Biomolecules, 12(2), 258. https://doi.org/10.3390/biom12020258

Nitzsche, B., Rong, W., Goede, A., Hoffmann, B., Scarpa, F., Kuebler, W., … & Pries, A. (2021). Coalescent angiogenesis—Evidence for a novel concept of vascular network maturation. Angiogenesis, 25(1), 35–45. https://doi.org/10.1007/s10456-021-09824-3

Wang, J., Chen, Y., Wang, Q., Xu, H., Jiang, Q., Wang, M., … & Lan, Q. (2022). LncRNA SPRY4‐IT1 facilitates cell proliferation and angiogenesis of glioma via the miR‐101‐3p/EZH2/VEGFA signaling axis. Cancer Medicine, 12(6), 7309–7326. https://doi.org/10.1002/cam4.5517

Chen, S., Chen, L., Niu, Y., Geng, N., & Feng, C. (2020). AEG‐1 promotes angiogenesis and may be a novel treatment target for tongue squamous cell carcinoma. Oral Diseases, 26(5), 876–884. https://doi.org/10.1111/odi.13300

Miura, K., Koyanagi‐Aoi, M., Maniwa, Y., & Aoi, T. (2023). Chorioallantoic membrane assay revealed the role of TIPARP in lung adenocarcinoma-induced angiogenesis. Cancer Cell International, 23(1). https://doi.org/10.1186/s12935-023-02870-5

Aryani, R., Nugroho, R., Manurung, H., Rulimada, M., Maytari, E., Siahaan, A., … & Jati, W. (2023). Anti-angiogenic activity of Ficus deltoidea L. Jack silver nanoparticles using chorioallantoic membrane assay. F1000Research, 12, 544. https://doi.org/10.12688/f1000research.130477.1

Ribatti, D., Annese, T., & Tamma, R. (2020). The use of the chick embryo CAM assay in the study of angiogenic activity of biomaterials. Microvascular Research, 131, 104026. https://doi.org/10.1016/j.mvr.2020.104026

Faihs, L., Firouz, B., Slezak, P., Slezak, C., Weißensteiner, M., Ebner, T., … & Dungel, P. (2022). A novel artificial intelligence-based approach for quantitative assessment of angiogenesis in the ex ovo CAM model. Cancers, 14(17), 4273. https://doi.org/10.3390/cancers14174273

Schneider‐Stock, R., & Ribatti, D. (2020). The CAM assay as an alternative in vivo model for drug testing. In Advances in Experimental Medicine and Biology (pp. 303–323). https://doi.org/10.1007/164_2020_375

Qiu, J., Li, M., Su, C., Liang, Y., Ou, R., Chen, X., … & Zhang, C. (2022). FOXS1 promotes tumor progression by upregulating CXCL8 in colorectal cancer. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.894043

Kundeková, B., Máčajová, M., Meta, M., Čavarga, I., & Bilčík, B. (2021). Chorioallantoic membrane models of various avian species: Differences and applications. Biology, 10(4), 301. https://doi.org/10.3390/biology10040301

Aventurado, C., Billones, J., Vasquez, R., & Castillo, A. (2020). In ovo and in silico evaluation of the anti-angiogenic potential of syringin. Drug Design, Development and Therapy, 14, 5189–5204. https://doi.org/10.2147/DDDT.S271952

Cao, P., Nie, G., Luo, J., Hu, R., Li, G., Hu, G., … & Zhang, C. (2022). Cadmium and molybdenum co-induce pyroptosis and apoptosis via the PTEN/PI3K/AKT axis in the livers of Shaoxing ducks (Anas platyrhynchos). Food & Function, 13(4), 2142–2154. https://doi.org/10.1039/d1fo02855c

Banerjee, A., Mukherjee, S., & Maji, B. (2021). Monosodium glutamate causes hepato-cardiac derangement in male rats. Human & Experimental Toxicology, 40(12_suppl), S359–S369. https://doi.org/10.1177/09603271211049550

Al‐Otaibi, A., Mansour, N., Elabd, H., & Esmail, N. (2022). Toxicity of monosodium glutamate intake on different tissues induced oxidative stress: A review. Journal of Medical and Life Science, 0(0), 68–81. https://doi.org/10.21608/jmals.2022.264345

Alhamed, T., Al-Marzook, F., & Al-Asady, A. (2021). The harmful effects of monosodium glutamate on blood parameters, liver and kidney functions in adult white rats and the protective role of omega-3. Indian Journal of Forensic Medicine & Toxicology, 15(3), 5245–5250. https://doi.org/10.37506/ijfmt.v15i3.16266

Sodomora, O. (2023). Morphometric assessment of the effects of monosodium glutamate on the carotid sinus wall: An experimental study. Reports of Morphology, 29(1), 39–45. https://doi.org/10.31393/morphology-journal-2023-29(1)-06

Матешук-Вацеба, Л., Holovatskyi, А., Harapko, Т., Foros, A., & Lytvak, Y. (2022). Changes in the structural organization of lymph nodes during short-term exposure to monosodium glutamate. Reports of Morphology, 28(4), 34–40. https://doi.org/10.31393/morphology-journal-2022-28(4)-05

Ibiyeye, R., Sulaimon, F., Imam, A., Adana, M., Okesina, A., & Ajao, M. (2023). Phoenix dactylifera and polyphenols ameliorated monosodium glutamate toxicity in the dentate gyrus of Wistar rats. Nigerian Journal of Physiological Sciences, 38(1), 73–78. https://doi.org/10.54548/njps.v38i1.11

Johnlouis, O., Ifeanyi, N., & Oluchukwu, O. (2022). Consequence of Tetrapleura tetraptera leaves on pro-oxidants, hepatic functions and histomorphology in monosodium glutamate-intoxicated rats. Research Journal of Medicinal Plant, 16(2), 37–48. https://doi.org/10.3923/rjmp.2022.37.48

Ružić, Z., Kanački, Z., Žikić, D., Ušćebrka, G., & Mirčeta, J. (2018). Circulation index as a quantitative indicator of angiogenesis in chorioallantoic membrane of chicken broilers. Contemporary Agriculture, 67(2), 164–170. https://doi.org/10.2478/contagri-2018-0023

Ishan, G., & Ezeuko, V. (2024). Histological assessment of placental development following maternal administration of monosodium glutamate in Wistar rats. Journal of Applied Sciences and Environmental Management, 28(6), 1639–1643. https://doi.org/10.4314/jasem.v28i6.1

Wang, G., Li, P., Zhang, S., Zhong, S., Chu, C., Zeng, S., … & Yang, X. (2018). Lipopolysaccharides (LPS) induced angiogenesis during chicken embryogenesis is abolished by combined ETA/ETB receptor blockade. Cellular Physiology and Biochemistry, 48(5), 2084–2090. https://doi.org/10.1159/000492547

Nowak-Sliwinska, P., Segura, T., & Iruela-Arispe, M. L. (2014). The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis, 17(4), 779–804. https://doi.org/10.1007/s10456-014-9440-7

Ribatti, D. (2023). The chick embryo chorioallantoic membrane (CAM): A multifaceted experimental model. Mechanisms of Development, 175, 203–215. https://doi.org/10.1016/j.mod.2023.103788

Vargas, A., Zeisser-Labouèbe, M., Lange, N., Gurny, R., & Delie, F. (2020). The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Advanced Drug Delivery Reviews, 174, 89–108. https://doi.org/10.1016/j.addr.2021.02.002

Pan, D., Gong, X., Wang, X., & Li, M. (2021). Role of active components of medicinal food in the regulation of angiogenesis. Frontiers in Pharmacology, 11, 594050. https://doi.org/10.3389/fphar.2020.594050

Martínez‐Poveda, B., Torres‐Vargas, J., Ocaña, M., García‐Caballero, M., Medina, M., & Quesada, A. (2019). The Mediterranean diet, a rich source of angiopreventive compounds in cancer. Nutrients, 11(9), 2036. https://doi.org/10.3390/nu11092036

Qian, K., Zheng, X., Wang, C., Huang, W., Liu, X., Xu, S., … & Lin, C. (2022). β-Sitosterol inhibits rheumatoid synovial angiogenesis through suppressing VEGF signaling pathway. Frontiers in Pharmacology, 12, 816477. https://doi.org/10.3389/fphar.2021.816477

Liang, M., Wang, H., & Qi, H. (2023). Astragaloside IV suppresses the effects of hepatocellular carcinoma cells on proliferation, angiogenesis, and invasion in human umbilical vein endothelial cells by controlling exosomes by inhibiting Rab27a. Journal of Food Biochemistry, 2023, 1–14. https://doi.org/10.1155/2023/8812742

Nurhidayati, L., Nugroho, A., Retnoaji, B., Sudarsono, S., & Fakhrudin, N. (2021). Antiangiogenesis activity study of awar-awar leaf ethanolic extract (Ficus septica Burm. f.) by chick chorioallantoic membrane method. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.607

Feng, Y., Deng, L., Guo, H., Zhao, Y., Peng, F., Wang, G., … & Yu, C. (2021). The anti-colon cancer effects of essential oil of Curcuma phaeocaulis through tumour vessel normalisation. Frontiers in Oncology, 11, 728464. https://doi.org/10.3389/fonc.2021.728464

Fiebel, P., Ramachandra, S., & Holton, K. (2023). The low glutamate diet reduces blood pressure in veterans with Gulf War illness: A CONSORT randomized clinical trial. Medicine, 102(4), e32726. https://doi.org/10.1097/md.0000000000032726

Lázár, A., Adams, H., Adger, W., & Nicholls, R. (2020). Modelling household well-being and poverty trajectories: An application to coastal Bangladesh. PLOS ONE, 15(9), e0238621. https://doi.org/10.1371/journal.pone.0238621

Downloads

Published

2025-07-05

How to Cite

1.
Mae T. Pulot C, Madale VA, Tipalan SC, V. Tabelin M, Salic-Hairulla MA. Angiogenic Effects of Selected Food Seasonings on Fertilized Duck Embryo via the CAM Assay. Seminars in Medical Writing and Education [Internet]. 2025 Jul. 5 [cited 2025 Aug. 15];4:442. Available from: https://mw.ageditor.ar/index.php/mw/article/view/442