Expression and Prognostic Relevance of LncRNA GSEC in HNSC: Focus on OSCC
DOI:
https://doi.org/10.56294/mw2025708Keywords:
HNSC, OSCC, lncRNA GSEC, Random ForestAbstract
Background: Bioinformatics identified HNSC diagnostic/prognostic lncRNAs; GSEC was selected for HNSC/OSCC validation.
Methods: HNSC transcriptomic/clinical data from TCGA identified differentially expressed lncRNAs. Univariate Cox regression found prognostic lncRNAs. The top 30 lncRNAs from random forest ranking intersected with Cox results selected diagnostic biomarkers. Xiantao Academic performed pan-cancer analysis of GSEC. UALCAN and Kaplan-Meier analyzed GSEC expression, clinical correlation, prognosis, and Xiantao Academic assessed immune infiltration in HNSC. Top 200 GSEC co-expressed genes (FDR < 0,05) underwent GO/KEGG enrichment via Metascape. qRT-PCR validated GSEC expression/clinical associations in collected OSCC tissues.
Results: A total of 2385 lncRNAs were differentially expressed in HNSC (1598 upregulated, 787 downregulated). Univariate Cox regression identified 1306 lncRNAs prognostic for HNSC. Intersection of the top 30 random forest-ranked lncRNAs with Cox results identified LINC02156, AL353807.5, and GSEC (ST3GAL4-AS1) as diagnostic biomarkers. GSEC was significantly upregulated in HNSC. Its expression correlated with pathological stage, clinical grade, and immune infiltration, but not with age/gender. High GSEC expression predicted poor prognosis. Enrichment of the top 200 co-expressed genes (FDR < 0,05) linked to GO terms (e.g., GO:0005788) and KEGG pathways (e.g., hsa00532). qRT-PCR confirmed GSEC overexpression in OSCC, correlating with T stage and lymph node metastasis, but not with age, sex, or differentiation grade.
Conclusion: GSEC is significantly upregulated in HNSC, linked to diagnosis, prognosis, immune infiltration (validated in OSCC), specifically correlating with T stage and lymph node metastasis, indicating its pro-oncogenic role and potential as a therapeutic target, warranting further study.
References
[1] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-49. doi:10.3322/caac.21660.
[2] Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020 Nov 26;6(1):92. doi:10.1038/s41572-020-00224-3.
[3] Barsouk A, Aluru JS, Rawla P, Saginala K, Barsouk A. Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Med Sci (Basel). 2023 Jun 13;11(2):42. doi:10.3390/medsci11020042.
[4] Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, et al. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci. 2023 Sep 22;15(1):44. doi:10.1038/s41368-023-00249-w.
[5] Bugshan A, Farooq I. Oral squamous cell carcinoma: metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000Res. 2020 Apr 2;9:229. doi:10.12688/f1000research.22941.1.
[6] Guo Z, Li K, Ren X, Wang X, Yang D, Ma S, et al. The role of the tumor microenvironment in HNSCC resistance and targeted therapy. Front Immunol. 2025 Apr 1;16:1554835. doi:10.3389/fimmu.2025.1554835.
[7] Zhang Y. LncRNA-encoded peptides in cancer. J Hematol Oncol. 2024 Aug 12;17(1):66. doi:10.1186/s13045-024-01591-0.
[8] Tan YT, Lin JF, Li T, Li JJ, Xu RH, Ju HQ. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun (Lond). 2021 Feb;41(2):109-20. doi:10.1002/cac2.12108.
[9] Niu X, Yang B, Liu F, Fang Q. LncRNA HOXA11-AS promotes OSCC progression by sponging miR-98-5p to upregulate YBX2 expression. Biomed Pharmacother. 2020 Jan;121:109623. doi:10.1016/j.biopha.2019.109623.
[10] Lu N, Jiang Q, Xu T, Gao Q, Wang Y, Huang Z, et al. LncOCMRL1 promotes oral squamous cell carcinoma growth and metastasis via the RRM2/EMT pathway. J Exp Clin Cancer Res. 2024 Sep 30;43(1):267. doi:10.1186/s13046-024-03190-w.
[11] Kim SH, Kim HJ, Kim YJ, Kim YH, Park HR. LncRNA EIF3J-DT promotes chemoresistance in oral squamous cell carcinoma. Oral Dis. 2024 Nov;30(8):4909-20. doi:10.1111/odi.14987.
[12] Anashkina AA, Leberfarb EY, Orlov YL. Recent Trends in Cancer Genomics and Bioinformatics Tools Development. Int J Mol Sci. 2021 Nov 10;22(22):12146. doi:10.3390/ijms222212146.
[13] Sharma R, Kaur G, Bansal P, Chawla V, Gupta V. Bioinformatics Paradigms in Drug Discovery and Drug Development. Curr Top Med Chem. 2023;23(7):579-88. doi:10.2174/1568026623666221229113456.
[14] Uesaka K, Oka H, Kato R, Kanie K, Kojima T, Tsugawa H, et al. Bioinformatics in bioscience and bioengineering: Recent advances, applications, and perspectives. J Biosci Bioeng. 2022 Nov;134(5):363-73. doi:10.1016/j.jbiosc.2022.08.004.
[15] Gauthier J, Vincent AT, Charette SJ, Derome N. A brief history of bioinformatics. Brief Bioinform. 2019 Nov 27;20(6):1981-96. doi:10.1093/bib/bby063.
[16] Chen C, Hou J, Tanner JJ, Cheng J. Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis. Int J Mol Sci. 2020 Apr 20;21(8):2873. doi:10.3390/ijms21082873.
[17] Chen Q, Meng X, Liao Q, Chen M. Versatile interactions and bioinformatics analysis of noncoding RNAs. Brief Bioinform. 2019 Sep 27;20(5):1781-94. doi:10.1093/bib/bby050.
[18] Wang Z, Jensen MA, Zenklusen JC. A Practical Guide to The Cancer Genome Atlas (TCGA). Methods Mol Biol. 2016;1418:111-41. doi:10.1007/978-1-4939-3578-9_6.
[19] Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2022 Jan;23(1):40-55. doi:10.1038/s41580-021-00407-0.
[20] Wang S, Xiong Y, Zhao L, Gu K, Li Y, Zhao F, et al. UCSCXenaShiny: an R/CRAN package for interactive analysis of UCSC Xena data. Bioinformatics. 2022 Jan 3;38(2):527-9. doi:10.1093/bioinformatics/btab561.
[21] Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia. 2022 Mar;25:18-27. doi:10.1016/j.neo.2022.01.001.
[22] Győrffy B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation (Camb). 2024 Apr 9;5(3):100625. doi:10.1016/j.xinn.2024.100625.
[23] de Bruijn I, Kundra R, Mastrogiacomo B, Tran TN, Sikina L, Mazor T, et al. Analysis and Visualization of Longitudinal Genomic and Clinical Data from the AACR Project GENIE Biopharma Collaborative in cBioPortal. Cancer Res. 2023 Dec 1;83(23):3861-7. doi:10.1158/0008-5472.CAN-23-0816.
[24] Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019 Apr 3;10(1):1523. doi:10.1038/s41467-019-09234-6.
[25] Giorgi FM, Ceraolo C, Mercatelli D. The R Language: An Engine for Bioinformatics and Data Science. Life (Basel). 2022 Apr 27;12(5):648. doi:10.3390/life12050648.
[26] Bhat GR, Hyole RG, Li J. Head and neck cancer: Current challenges and future perspectives. Adv Cancer Res. 2021;152:67-102. doi:10.1016/bs.acr.2021.05.002.
[27] Chen SMY, Krinsky AL, Woolaver RA, Wang X, Chen Z, Wang JH. Tumor immune microenvironment in head and neck cancers. Mol Carcinog. 2020 Jul;59(7):766-74. doi:10.1002/mc.23162.
[28] Tian X, Hu D, Wang N, Zhang L, Wang X. LINC01614 is a promising diagnostic and prognostic marker in HNSC linked to the tumor microenvironment and oncogenic function. Front Genet. 2024 Apr 9;15:1337525. doi:10.3389/fgene.2024.1337525.
[29] Ding Q, Lin F, Huang Z, Li Y, Cai S, Chen X, et al. Non-coding RNA-related FCGBP downregulation in head and neck squamous cell carcinoma: a novel biomarker for predicting paclitaxel resistance and immunosuppressive microenvironment. Sci Rep. 2024 Feb 23;14(1):4426. doi:10.1038/s41598-024-55210-6.
[30] Rong M, Zhang M, Dong F, Wu K, Cai B, Niu J, et al. LncRNA RASAL2-AS1 promotes METTL14-mediated m6A methylation in the proliferation and progression of head and neck squamous cell carcinoma. Cancer Cell Int. 2024 Mar 25;24(1):113. doi:10.1186/s12935-024-03302-8.
[31] Li Z, Qiu X, He Q, Fu X, Ji F, Tian X. CCND1-associated ceRNA network reveal the critical pathway of TPRG1-AS1-hsa-miR-363-3p-MYO1B as a prognostic marker for head and neck squamous cell carcinoma. Sci Rep. 2023 Jul 22;13(1):11831. doi:10.1038/s41598-023-38847-7.
[32] Gao C, Lu W, Lou W, Wang L, Xu Q. Long noncoding RNA HOXC13-AS positively affects cell proliferation and invasion in nasopharyngeal carcinoma via modulating miR-383-3p/HMGA2 axis. J Cell Physiol. 2019 Aug;234(8):12809-20. doi:10.1002/jcp.27915.
[33] Hu S, Zhang J, Guo G, Zhang L, Dai J, Gao Y. Comprehensive analysis of GSEC/miR-101-3p/SNX16/PAPOLG axis in hepatocellular carcinoma. PLoS One. 2022 Apr 28;17(4):e0267117. doi:10.1371/journal.pone.0267117.
[34] Liu R, Ju C, Zhang F, Tang X, Yan J, Sun J, et al. LncRNA GSEC promotes the proliferation, migration and invasion by sponging miR-588/EIF5A2 axis in osteosarcoma. Biochem Biophys Res Commun. 2020 Nov 5;532(2):300-7. doi:10.1016/j.bbrc.2020.08.056.
[35] Zhang J, Du C, Zhang L, Wang Y, Zhang Y, Li J. lncRNA GSEC Promotes the Progression of Triple Negative Breast Cancer (TNBC) by Targeting the miR-202-5p/AXL Axis. Onco Targets Ther. 2021 Apr 20;14:2747-59. doi:10.2147/OTT.S293832.
[36] Liu P, Zhou L, Chen H, He Y, Li G, Hu K. Identification of a novel intermittent hypoxia-related prognostic lncRNA signature and the ceRNA of lncRNA GSEC/miR-873-3p/EGLN3 regulatory axis in lung adenocarcinoma. PeerJ. 2023 Oct 10;11:e16242. doi:10.7717/peerj.16242.
[37] Yang K, Liu H, Li JH. A methylation-related lncRNA-based prediction model in lung adenocarcinomas. Clin Respir J. 2024 Aug;18(8):e13753. doi:10.1111/crj.13753.
[38] Hu J, Tian S, Liu Q, Hou J, Wu J, Wang X, et al. A prognostic signature of Glutathione metabolism-associated long non-coding RNAs for lung adenocarcinoma with immune microenvironment insights. Front Immunol. 2025 Feb 10;16:1477437. doi:10.3389/fimmu.2025.1477437.
[39] Li Y, Li X, Yu Z. Novel methylation-related long non-coding RNA clinical outcome prediction method: the clinical phenotype and immune infiltration research in low-grade gliomas. Front Oncol. 2023 May 9;13:1177120. doi:10.3389/fonc.2023.1177120.
[40] Hu J, Tian S, Liu Q, Hou J, Wu J, Wang X, et al. A prognostic signature of Glutathione metabolism-associated long non-coding RNAs for lung adenocarcinoma with immune microenvironment insights. Front Immunol. 2025 Feb 10;16:1477437. doi:10.3389/fimmu.2025.1477437.
[41] Song J, Sun Y, Cao H, Liu Z, Xi L, Dong C, et al. A novel pyroptosis-related lncRNA signature for prognostic prediction in patients with lung adenocarcinoma. Bioengineered. 2021 Dec;12(1):5932-49. doi:10.1080/21655979.2021.1972078.
[42] Liu A, Wang X, Hu L, Yan D, Yin Y, Zheng H, et al. A predictive molecular signature consisting of lncRNAs associated with cellular senescence for the prognosis of lung adenocarcinoma. PLoS One. 2023 Jun 23;18(6):e0287132. doi:10.1371/journal.pone.0287132.
[43] Pires A, Burnell S, Gallimore A. Exploiting ECM remodelling to promote immune-mediated tumour destruction. Curr Opin Immunol. 2022 Feb;74:32-8. doi:10.1016/j.coi.2021.09.006.
[44] Huang D, Chen J, Yang L, Ouyang Q, Li J, Lao L, et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat Immunol. 2018 Oct;19(10):1112-25. doi:10.1038/s41590-018-0207-y.
[45] Liu C, Shen A, Song J, Cheng L, Zhang M, Wang Y, et al. LncRNA-CCAT5-mediated crosstalk between Wnt/β-Catenin and STAT3 signaling suggests novel therapeutic approaches for metastatic gastric cancer with high Wnt activity. Cancer Commun (Lond). 2024 Jan;44(1):76-100. doi:10.1002/cac2.12507.
[46] Xu Z, Wang Q, Zhang Y, Li X, Wang M, Zhang Y, et al. Exploiting tertiary lymphoid structures gene signature to evaluate tumor microenvironment infiltration and immunotherapy response in colorectal cancer. Front Oncol. 2024 May 23;14:1383096. doi:10.3389/fonc.2024.1383096.
[47] Sun M, Geng D, Li S, Chen Z, Zhao W. LncRNA PART1 modulates toll-like receptor pathways to influence cell proliferation and apoptosis in prostate cancer cells. Biol Chem. 2018 Mar 28;399(4):387-95. doi:10.1515/hsz-2017-0255.
[48] Chen Z, Qiao S, Yang L, Sun M, Li B, Lu A, et al. Mechanistic Insights into the Roles of the IL-17/IL-17R Families in Pancreatic Cancer. Int J Mol Sci. 2023 Aug 31;24(17):13539. doi:10.3390/ijms241713539.
[49]Razi S, Baradaran Noveiry B, Keshavarz-Fathi M, Rezaei N. IL-17 and colorectal cancer: From carcinogenesis to treatment. Cytokine. 2019 Apr;116:7-12. doi: 10.1016/j.cyto.2018.12.021.
[50] Festekdjian T, Bonavida B. Targeting the Depletion of M2 Macrophages: Implication in Cancer Immunotherapy. Crit Rev Oncog. 2024;29(4):55-73. doi: 10.1615/CritRevOncog.2024053580.
[51]Zhou W, Feng Y, Lin C, Chao CK, He Z, Zhao S, et al. Yin Yang 1-Induced Long Noncoding RNA DUXAP9 Drives the Progression of Oral Squamous Cell Carcinoma by Blocking CDK1-Mediated EZH2 Degradation. Adv Sci (Weinh). 2023 Sep;10(25):e2207549. doi: 10.1002/advs.202207549.
[52] Shi L, Yang Y, Li M, Li C, Zhou Z, Tang G, et al. LncRNA IFITM4P promotes immune escape by up-regulating PD-L1 via dual mechanism in oral carcinogenesis. Mol Ther. 2022 Apr 6;30(4):1564-1577. doi: 10.1016/j.ymthe.2022.01.003.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Deleheibateer, Od Bayarsaikhan, Ganbayar Batmunkh, Xu Wu, Xingan Zhou, Shiirevnyamba Avirmed (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.