ChatGPT in Dental Education: A Dual-Method Analysis of Technology Acceptance and Predictive Modeling
DOI:
https://doi.org/10.56294/mw2025826Keywords:
Dental education, AI adoption, Technology Acceptance Model, Perceived Value, Task-Technology Fit, PLS-SEM, Machine learningAbstract
Introduction: artificial intelligence (AI) is increasingly integrated into dental education, yet little is known about the adoption of AI-powered tools such as ChatGPT. Understanding the determinants of students’ behavioral intention to use these tools is crucial for effective integration into curricula. This study extends the Technology Acceptance Model (TAM) by incorporating Perceived Value (VAL) and Task-Technology Fit (TTF) and employs a hybrid analytical approach.
Method: a structured questionnaire comprising 50 items across ten constructs was distributed to 318 dental students in Indonesia, with 263 valid responses collected. Data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) to test reliability, validity, and hypothesized relationships. To enhance predictive validation, six machine learning (ML) classifiers (AdaBoostM1, J48, BayesNet, Logistic Regression, OneR, and LWL) were applied.
Results: PLS-SEM results revealed that Perceived Value (β = 0.347, p < 0.001) and Perceived Usefulness (β = 0.321, p < 0.001) were the strongest predictors of intention to use ChatGPT. Additional significant effects were found for Perceived Enjoyment, Trust, and Perceived Accuracy. Conversely, Perceived Ease of Use, Social Influence, and Facilitating Conditions were not significant. Mediation analysis confirmed that Perceived Usefulness mediated the effects of TTF, Trust, and Accuracy on adoption intention. ML analysis corroborated these findings, with AdaBoostM1 achieving the highest predictive accuracy (87.3%).
Conclusions: adoption of ChatGPT in dental education is predominantly driven by perceived academic value, usefulness, and engaging learning experiences rather than ease of use or social factors. The validated framework integrating TAM, Perceived Value, and TTF provides both theoretical advancement and practical guidance for integrating AI into dental education. The hybrid use of PLS-SEM and ML enhances model robustness and offers a replicable methodology for future educational technology research.
References
1. Gönülol N, Kalyoncuoglu E. Education and learning in digital dentistry. Journal of Experimental and Clinical Medicine (Turkey). 2021;38(SI-2):163–7. http://dx.doi.org/10.52142/OMUJECM.38.SI.DENT.14 DOI: https://doi.org/10.52142/omujecm.38.si.dent.14
2. Zitzmann NU, Matthisson L, Ohla H, Joda T. Digital undergraduate education in dentistry: A systematic review. International Journal of Environmental Research and Public Health. 2020;17(9):3269. http://dx.doi.org/10.3390/ijerph17093269 DOI: https://doi.org/10.3390/ijerph17093269
3. Tadinada A, Gul G, Godwin L, Al Sakka Y, Crain G, Stanford CM, et al. Utilizing an organizational development framework as a road map for creating a technology-driven agile curriculum in predoctoral dental education. Journal of Dental Education. 2023;87(3):394–400. http://dx.doi.org/10.1002/jdd.13131 DOI: https://doi.org/10.1002/jdd.13131
4. Shah KC, Kane BA, Lloren PA. The New Age of Prosthodontics Education: Digital Prosthodontics and Simulation. Journal of the California Dental Association. 2021;49(6):401–5. http://dx.doi.org/10.1080/19424396.2021.12222723 DOI: https://doi.org/10.1080/19424396.2021.12222723
5. Mirzaraximov M. the Use of Artificial Intelligence-Based Chatbots in the Educational System. Scientific journal of the Fergana State University. 2023;29(3). http://dx.doi.org/10.56292/sjfsu/vol29_iss3/a209 DOI: https://doi.org/10.56292/SJFSU/vol29_iss3/a209
6. Banerjee A. Witnessing a Paradigm Shift: Assessing the Role of Artificial Intelligence in the Domain of Education. International Journal of Advanced Research. 2023;11(07):553–7. http://dx.doi.org/10.21474/ijar01/17259 DOI: https://doi.org/10.21474/IJAR01/17259
7. T P R. AI-Driven Pedagogy: Unveiling ChatGPT’s Influence in Education. Journal of Applied Science, Engineering, Technology and Management. 2024;2(01):09–14. http://dx.doi.org/10.61779/jasetm.v2i1.2 DOI: https://doi.org/10.61779/jasetm.v2i1.2
8. Dila Ram Bhandari. CHATGPT and AI Tools: A Paradigm Shift in Education and Other Domains. Pravaha. 2023;29(1):150–8. http://dx.doi.org/10.3126/pravaha.v29i1.71415 DOI: https://doi.org/10.3126/pravaha.v29i1.71415
9. Nikolopoulou K. Generative Artificial Intelligence in Higher Education: Exploring Ways of Harnessing Pedagogical Practices with the Assistance of ChatGPT. International Journal of Changes in Education. 2024;1(2):103–11. http://dx.doi.org/10.47852/bonviewijce42022489 DOI: https://doi.org/10.47852/bonviewIJCE42022489
10. Towers A. A scoping review of the use and application of virtual reality in pre-clinical dental education. British Dental Journal. 2019;226(5):358–66. http://dx.doi.org/10.1038/s41415-019-0041-0 DOI: https://doi.org/10.1038/s41415-019-0041-0
11. Imran E, Adanir N, Khurshid Z. Significance of haptic and virtual reality simulation (VRS) in the dental education: A review of literature. Applied Sciences (Switzerland). 2021;11(21):10196. http://dx.doi.org/10.3390/app112110196 DOI: https://doi.org/10.3390/app112110196
12. Li Y, Ye H, Ye F, Liu Y, Lv L, Zhang P, et al. The current situation and future prospects of simulators in dental education. Vol. 23, Journal of Medical Internet Research. JMIR Publications Inc.; 2021. http://dx.doi.org/10.2196/preprints.23635 DOI: https://doi.org/10.2196/23635
13. Dzyuba N, Jandu J, Yates J, Kushnerev E. Virtual and augmented reality in dental education: The good, the bad and the better. European Journal of Dental Education. 2025;29(3):497–515. http://dx.doi.org/10.1111/eje.12871 DOI: https://doi.org/10.1111/eje.12871
14. Parma Dewi I, Aditya Fiandra Y, Fadillah R, Marta R, Rosalina L, Azima Noordin N, et al. Explaining VR/AR Learning in Medical Education: A Comparative PLS-SEM Analysis of TAM, SDT, TTF, and Flow Theory. Seminars in Medical Writing and Education. 2025 Sep 25;4:799. https://mw.ageditor.ar/index.php/mw/article/view/799 DOI: https://doi.org/10.56294/mw2025799
15. Zaim M, Arsyad S, Waluyo B, Ardi H, Al Hafizh M, Zakiyah M, et al. Generative AI as a Cognitive Co-Pilot in English Language Learning in Higher Education. Education Sciences. 2025;15(6). http://dx.doi.org/10.3390/educsci15060686 DOI: https://doi.org/10.3390/educsci15060686
16. Ranuharja F, Ganefri, Rizal F, Langeveldt D, Ejjami R, Torres-Toukoumidis A, et al. Relevance and Impact of Generative AI in Vocational Instructional Material Design: A Systematic Literature Review. Salud, Ciencia y Tecnologia. 2025;5. http://dx.doi.org/10.56294/saludcyt20251336 DOI: https://doi.org/10.56294/saludcyt20251336
17. Wulansari RE, Sakti RH, Saputra H, Samala AD, Novalia R, Tun HM. Multimodal Analysis of Augmented Reality in Basic Programming Course: Innovation Learning in Modern Classes. Journal of Applied Engineering and Technological Science. 2024;6(1):115–37.
18. Sardi J, Darmansyah, Candra O, Yuliana DF, Habibullah, Yanto DTP, et al. How Generative AI Influences Students’ Self-Regulated Learning and Critical Thinking Skills? A Systematic Review. International Journal of Engineering Pedagogy. 2025;15(1):94–108. http://dx.doi.org/10.3991/ijep.v15i1.53379 DOI: https://doi.org/10.3991/ijep.v15i1.53379
19. Hidayat H, Zulhendra Z, Efrizon E, Delianti VI, Dewi FK, Isa MRM, et al. Computational Thinking Skills in Engineering Education: Enhancing Academic Achievement Through Innovations, Challenges, and Opportunities. TEM Journal. 2024;13(4):3454–67. http://dx.doi.org/10.18421/TEM134-78 DOI: https://doi.org/10.18421/TEM134-78
20. John W. Edition TC. Qualitative, quantitative, and mixed methods approaches. Research Design Qualitative Quantitative and Mixed Methods Approaches. Vol. 4, Research Design. United State of America: Sage Publications; 2009. 260 p.
21. Davis FD. Technology acceptance model: TAM. Al-Suqri, MN, Al-Aufi, AS: Information Seeking Behavior and Technology Adoption. 1989;205(219):5.
22. Dodds WB, Monroe KB, Grewal D. Effects of Price, Brand, and Store Information on Buyers’ Product Evaluations. Journal of Marketing Research. 1991;28(3):307. DOI: https://doi.org/10.2307/3172866
23. Sweeney JC, Soutar GN. Consumer perceived value: The development of a multiple item scale. Journal of Retailing. 2001;77(2):203–20. http://dx.doi.org/10.1016/S0022-4359(01)00041-0 DOI: https://doi.org/10.1016/S0022-4359(01)00041-0
24. Bagozzi RP, Davis FDD, Warshaw PR. Development and Test of a Theory of Technological Learning and Usage. Human Relations. 1992;45(7):659–86. DOI: https://doi.org/10.1177/001872679204500702
25. Davis FD, Bagozzi RP, Warshaw PR. Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology. 1992;22(14):1111–32. DOI: https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
26. Van Der Heijden H. User acceptance of hedonic information systems. MIS Quarterly: Management Information Systems. 2004;28(4):695–704. DOI: https://doi.org/10.2307/25148660
27. Gefen D, Rigdon EE, Straub D. An update and extension to SEM guidelines for administrative and social science research. MIS Quarterly: Management Information Systems. 2011;35(2):iii–xiv. DOI: https://doi.org/10.2307/23044042
28. Gefen D, Karahanna E, Straub DW. Inexperience and experience with online stores: The importance of TAM and trust. IEEE Transactions on Engineering Management. 2003;50(3):307–21. DOI: https://doi.org/10.1109/TEM.2003.817277
29. Gefen D, Karahanna E, Straub DW. Trust and tam in online shopping: AN integrated model. MIS Quarterly: Management Information Systems. 2003;27(1):51–90. http://dx.doi.org/10.2307/30036519 DOI: https://doi.org/10.2307/30036519
30. Shin D. The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI. International Journal of Human Computer Studies. 2021;146:102551. DOI: https://doi.org/10.1016/j.ijhcs.2020.102551
31. Venkatesh V, Morris MG, Davis GB, Davis FD. User acceptance of information technology: Toward a unified view. MIS Quarterly: Management Information Systems. 2003;27(3):425–78.
32. Goodhue DL, Thompson RL. Task-technology fit and individual performance. MIS Quarterly: Management Information Systems. 1995;19(2):213–33. http://dx.doi.org/10.2307/249689 DOI: https://doi.org/10.2307/249689
33. Venkatesh V, Morris MG, Davis GB, Davis FD. User acceptance of information technology: Toward a unified view. MIS Quarterly: Management Information Systems. 2003;27(3):425–78. DOI: https://doi.org/10.2307/30036540
34. Etikan I. Comparison of Convenience Sampling and Purposive Sampling. American Journal of Theoretical and Applied Statistics. 2016;5(1):1. DOI: https://doi.org/10.11648/j.ajtas.20160501.11
35. Wu Suen LJ, Huang HM, Lee HH. A comparison of convenience sampling and purposive sampling. Journal of Nursing. 2014;61(3):105–11.
36. Hair JF, Hult GTM, Ringle CM, Sarstedt M, Thiele KO. Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science. 2017;45(5):616–32. https://doi.org/10.1007/s11747-017-0517-x DOI: https://doi.org/10.1007/s11747-017-0517-x
37. Singh A, Thakur N, Sharma A. A review of supervised machine learning algorithms. In: Proceedings of the 10th INDIACom; 2016 3rd International Conference on Computing for Sustainable Global Development, INDIACom 2016. Ieee; 2016. p. 1310–5.
38. Saraswat P. Supervised Machine Learning Algorithm: A Review of Classification Techniques. Smart Innovation, Systems and Technologies. 2022;273:477–82. DOI: https://doi.org/10.1007/978-3-030-92905-3_58
39. Kotsiantis SB, Zaharakis ID, Pintelas PE. Machine learning: A review of classification and combining techniques. Artificial Intelligence Review. 2006;26(3):159–90. DOI: https://doi.org/10.1007/s10462-007-9052-3
40. Chin WW. Issues and opinion on structural equation modeling. Vol. 22, MIS Quarterly: Management Information Systems. JSTOR; 1998. p. vii–xvi.
41. Fornell C, Larcker DF. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research. 1981;18(1):39. https://doi.org/10.2307/3151312 DOI: https://doi.org/10.2307/3151312
42. Henseler J, Ringle CM, Sarstedt M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science. 2015;43(1):115–35. https://doi.org/10.1007/s11747-014-0403-8 DOI: https://doi.org/10.1007/s11747-014-0403-8
43. Diamantopoulos A, Siguaw JA. Formative versus reflective indicators in organizational measure development: A comparison and empirical illustration. British Journal of Management. 2006;17(4):263–82. https://doi.org/10.1111/j.1467-8551.2006.00500.x DOI: https://doi.org/10.1111/j.1467-8551.2006.00500.x
44. Bilad MR, Yaqin LN, Zubaidah S. Recent Progress in the Use of Artificial Intelligence Tools in Education. Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika. 2023;7(3):279–315. http://dx.doi.org/10.36312/esaintika.v7i3.1377 DOI: https://doi.org/10.36312/esaintika.v7i3.1377
45. Agarwal G, Ramamoorthi L, Yuen T, Merced E, Brenner J, Wu W, et al. Exploring Applications of Artificial Intelligence Tools in Clinical Care and Health Professions Education: An Online Module for Students. MedEdPORTAL : the journal of teaching and learning resources. 2025;21:11524. http://dx.doi.org/10.15766/mep_2374-8265.11524 DOI: https://doi.org/10.15766/mep_2374-8265.11524
46. Pham TD, Karunaratne N, Exintaris B, Liu D, Lay T, Yuriev E, et al. The impact of generative AI on health professional education: A systematic review in the context of student learning. Medical Education. 2025; http://dx.doi.org/10.1111/medu.15746 DOI: https://doi.org/10.1111/medu.15746
47. de los Angeles Segura-Azuara N, de Jesus Garza-Arriaga F, Guzman-Segura JG. Enhanced Learning with Artificial Intelligence: a comparative study in medical students. 2025 Institute for the Future of Education Conference, IFE 2025. IEEE; 2025. p. 1–8. http://dx.doi.org/10.1109/IFE63672.2025.11024693 DOI: https://doi.org/10.1109/IFE63672.2025.11024693
48. Feigerlova E, Hani H, Hothersall-Davies E. A systematic review of the impact of artificial intelligence on educational outcomes in health professions education. BMC Medical Education. 2025;25(1). http://dx.doi.org/10.1186/s12909-025-06719-5 DOI: https://doi.org/10.1186/s12909-025-06719-5
49. Samala AD, Sokolova EV, Grassini S, Rawas S. ChatGPT: a bibliometric analysis and visualization of emerging educational trends, challenges, and applications. International Journal of Evaluation and Research in Education . 2024;13(4):2374–87. https://doi.org/10.11591/ijere.v13i4.28119 DOI: https://doi.org/10.11591/ijere.v13i4.28119
50. Azhar NBA, Zahari MSM, Ferdian F, Hanafiah MH. Unpacking the power of trust: how relative advantage, compatibility, ease of use and usefulness drive hotel self-directed bookings. Consumer Behavior in Tourism and Hospitality. 2025 Jan 16;20(1):148–63. https://doi.org/10.1108/CBTH-05-2024-0176 DOI: https://doi.org/10.1108/CBTH-05-2024-0176
51. Venkatesh V, Thong JYL, Xu X. Unified theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the Association for Information Systems. 2016;17(5):328–76. http://dx.doi.org/10.17705/1jais.00428 DOI: https://doi.org/10.17705/1jais.00428
52. Baxmann M, Baráth Z, Kárpáti K. Efficacy of typodont and simulation training in orthodontic education: a systematic review. BMC Medical Education. 2024;24(1). http://dx.doi.org/10.1186/s12909-024-06425-8 DOI: https://doi.org/10.1186/s12909-024-06425-8
53. Al-Saud LM. Simulated skill complexity and perceived cognitive load during preclinical dental training. European Journal of Dental Education. 2023;27(4):992–1003. http://dx.doi.org/10.1111/eje.12891 DOI: https://doi.org/10.1111/eje.12891
54. Dewi IP, Ambiyar, Effendi H, Giatman M, Hanafi HF, Ali SK. The Impact of Virtual Reality on Programming Algorithm Courses on Student Learning Outcomes. International Journal of Learning, Teaching and Educational Research. 2024;23(10):45–61. http://dx.doi.org/10.26803/ijlter.23.10.3 DOI: https://doi.org/10.26803/ijlter.23.10.3
55. Dewi IP, Asnur L, Marta R, Yanto DTP, Dhanil M, Saari EM, et al. How Effective Is Immersive AR Continental Food Course for Vocational Education? Analyzing Knowledge Gains and Learning Outcome Effects. International Journal of Information and Education Technology. 2025;15(1):127–36. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85216637127&doi=10.18178%2Fijiet.2025.15.1.2225&partnerID=40&md5=ea876ceee7b825016f252a5debc6b7f3
56. Rahimi Esbo S, Ghaemi-Amiri M, Mostafazadeh-Bora M. Assessment of Medical Students’ Acceptance, Knowledge, Attitudes, and Readiness toward Artificial Intelligence. Journal of Mazandaran University of Medical Sciences. 2024;34(239):88–95. DOI: https://doi.org/10.61186/iau.34.4.450
57. Tamilmani K, Rana NP, Wamba SF, Dwivedi R. The extended Unified Theory of Acceptance and Use of Technology (UTAUT2): A systematic literature review and theory evaluation. International Journal of Information Management. 2021;57:102269. http://dx.doi.org/10.1016/j.ijinfomgt.2020.102269 DOI: https://doi.org/10.1016/j.ijinfomgt.2020.102269
58. Eysenbach G. The Role of ChatGPT, Generative Language Models, and Artificial Intelligence in Medical Education: A Conversation With ChatGPT and a Call for Papers. JMIR Medical Education. 2023;9(1):e46885. http://dx.doi.org/10.2196/46885 DOI: https://doi.org/10.2196/46885
59. Masters K. Ethical use of Artificial Intelligence in Health Professions Education: AMEE Guide No. 158. Medical Teacher. 2023;45(6):574–84. http://dx.doi.org/10.1080/0142159X.2023.2186203 DOI: https://doi.org/10.1080/0142159X.2023.2186203
60. Cotton DRE, Cotton PA, Shipway JR. Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International. 2024;61(2):228–39. http://dx.doi.org/10.1080/14703297.2023.2190148 DOI: https://doi.org/10.1080/14703297.2023.2190148
61. Stokel-Walker C, Van Noorden R. What ChatGPT and generative AI mean for science. Nature. 2023;614(7947):214–6. http://dx.doi.org/10.1038/d41586-023-00340-6 DOI: https://doi.org/10.1038/d41586-023-00340-6
62. Stokel-Walker C. How does medicine assess AI? BMJ (Clinical research ed). 2023;383:p2362. http://dx.doi.org/10.1136/bmj.p2362 DOI: https://doi.org/10.1136/bmj.p2362
63. Sharma R, Shrivastava SS, Sharma A. Predicting Student Performance Using Educational Data Mining and Learning Analytics Technique. Journal of Intelligent Systems and Internet of Things. 2023;10(2):24–37. http://dx.doi.org/10.54216/JISIoT.100203 DOI: https://doi.org/10.54216/JISIoT.100203
64. Sharma M, Kumar P, Gundewar S. Leveraging AI and machine learning for predictive analytics in business intelligence. In: AI-Powered Business Intelligence for Modern Organizations. IGI Global; 2024. p. 29–50. http://dx.doi.org/10.4018/979-8-3693-8844-0.ch002 DOI: https://doi.org/10.4018/979-8-3693-8844-0.ch002
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Agariadne Dwinggo Samala, Yudha Aditya Fiandra, Oryce Zahara, Feri Ferdian, Ainil Mardiah, Juan Luis Cabanillas-García, Xiaohan Feng, Juana Maria Arcelus-Ulibarrena (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.